home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

Plantes cultivées : vers des résistances durables aux virus sans perte de rendement


France
March 9, 2018

Afin de répondre au défi de nourrir une population mondiale croissante et de manière saine et durable, l’un des leviers est de renforcer les défenses naturelles des plantes vis-à-vis des pathogènes, notamment des virus. Chez les variétés végétales résistantes, des mutations naturelles ont été sélectionnées en transformant certains gènes en « neutralisateurs » de virus. Ces mutations génétiques sont largement utilisées pour sélectionner des variétés résistantes par croisement. Cependant, certaines plantes cultivées sont dépourvues de telles résistances. Les chercheurs de l’Inra et du CEA ont évalué comment la modification d’une protéine des plantes hôtes, nommée eIF4E1, peut conduire à une résistance large et efficace aux Potyvirus sans modifier le rendement des plantes. Ces résultats viennent d’être publiés dans la revue Plant Biotechnology Journal.

Les Potyvirus constituent un des plus grands groupes de virus phytopathogènes regroupant des virus comme la sharka sur les Prunus et le virus Y de la pomme de terre, causant des pertes de récolte majeures. L’analyse génétique des résistances à ces virus chez des plantes cultivées ou modèles a permis de mettre en évidence le rôle central de la protéine de plante eIF4E1, non seulement pour la synthèse de protéines dans la plante mais aussi pour la résistance des plantes aux virus. En effet, lors de l’infection des plantes, les Potyvirus recrutent ces facteurs de la plante hôte pour se multiplier.

Chez de nombreuses espèces cultivées et sauvages, des mutations dans ce gène ont été sélectionnées, conduisant au changement de plusieurs acides aminés de la protéine eIF4E1 conférant ainsi une résistance des plantes aux Potyvirus. Même muté, ce gène reste fonctionnel et joue son rôle dans la synthèse des protéines chez ces plantes. Différentes mutations naturelles induisant la résistance aux Potyvirus ont été identifiées, notamment chez le piment, la tomate ou le pois cultivé.

Les chercheurs de l’Inra et du CEA ont montré que ces modifications ciblées de la protéine eIF4E1 pouvaient être reproduites et transférées chez une plante dépourvue de résistance naturelle afin de conduire à une résistance sans affecter le développement de la plante. Pour cela, ils ont produit un gène synthétique eIF4E1 d’Arabidopsis thaliana en y apportant six changements d’acides aminés connus pour être responsable de la résistance naturelle du pois aux Potyvirus. Par des méthodes de biotechnologies, ils ont remplacé le gène eIF4E1 de la plante modèle Arabidopsis par ce gène synthétique. Après introduction, les scientifiques ont vérifié que ce nouvel allèle confère la résistance de la plante à un isolat de Potyvirus. Le fait que cette protéine soit fonctionnelle permet de l’associer à d’autres résistances afin de produire des plantes résistantes à un grand nombre de Potyvirus différents, et cela sans perte de rendement.

Ces travaux apportent la preuve de concept de l’efficacité du design de gènes permettant de mettre en place des résistances génétiques sans nuire au développement de la plante, par la connaissance de la variabilité naturelle chez une espèce, comme le pois cultivé. Ils montrent qu’il est possible d’appliquer cette connaissance à une autre espèce, ce qui ouvre des perspectives pour le futur développement de résistance à large spectre et plus durable grâce aux biotechnologies. Ces résultats pourraient être transférés à la vigne, la pomme de terre, les arbres fruitiers et le manioc, espèces cultivées également affectées par des virus du genre Potyvirus. Ils confirment enfin l’importance de l’étude de la biodiversité comme réservoir de résistances génétiques transférables entres espèces.

Référence

Trans-species synthetic gene design allows resistance pyramiding and broad spectrum engineering of virus resistance in plants. Anna Bastet, Baptiste Lederer, Nathalie Giovinazzo, Xavier Arnoux, Sylvie German-Retana, Catherine Reinbold, Véronique Brault, Damien Garcia, Samia Djennane, Sophie Gersch, Olivier Lemaire, Christophe Robaglia et Jean-Luc Gallois. Plant Biotechnology Journal. 5 mars 2018
https://doi.org/10.1111/pbi.12896



More solutions from: INRAE (Institut National de la Recherche Agronomique)


Website: https://www.inrae.fr

Published: March 9, 2018


Copyright @ 1992-2024 SeedQuest - All rights reserved