Germany
June 12, 2020
High-throughput analyses of small substances in Nicotiana attenuata reveal that plants re-organize their metabolism to produce highly-specific defense metabolites after insect attack
Do plants attacked by herbivores produce substances that are most effective against attackers in a targeted manner, or are herbivore-induced changes in a plant metabolism random, which could thwart the performance of herbivores? Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and at the CNRS Institute of Plant Molecular Biology/University of Strasbourg, France, tested these long-standing hypotheses for the first time using the coyote tobacco Nicotiana attenuata and its close relatives. They combined extensive measurements of known and unknown plant metabolites using mass spectrometry with statistical measures derived from information theory. The results show that plants regulate their metabolism directionally to produce effective defenses. Furthermore, a comparative approach using different populations and closely related species demonstrated that the amount of certain plant hormones are crucial for the directionality of the plant’s response to its enemy. (Science Advances, doi: 10.1126/sciadv.aaz0381, June 2020).
The African cotton leafworm Spodoptera littoralis feeds on the leaves of the wild tobacco Nicotiana attenuata. This pest insect is a food generalist and feeds on many different plants, Extensive analyses of the metabolites produced by the plant after attack by the two herbivores and the application of statistical assumptions based on information theory demonstrated that the chemical defense of tobacco plants is a directed response to herbivore attack. Photo: Danny Kessler, MPI Chem. Ecol.
All living organisms on earth can be divided into two major groups: those who produce their own food from abiotic sources, such as light, and those who feed on other organisms. These different ways of feeding affect an organism’s metabolism. Plants, which gain their energy from light, produce a much greater diversity of metabolites than animals. Scientists have long wondered which evolutionary forces are behind this difference. As early as the in the 1950s, researchers assumed that that the ability of plants to produce certain substances to defend themselves could be one reason. There are two different theories on how the production of such defensive substances is regulated in a plant: One possibility is that plants adapt their metabolism in such a way that they produce compounds with defensive functions according to the probability of a future attack. This theory is called "Optimal Defense". In contrast, a second theory assumes that plants change their metabolism randomly. For herbivores, these random changes would not be predictable and therefore they cannot adapt to a plant’s defense. This assumption is called the theory of a Moving Target, because the defense strategy is not targeted, but hits attackers at random.
Even though many individual defensive substances plants produce after being attacked have by now been well characterized, it has not yet been possible to test experimentally which of the two theories applies on a broad metabolic scale. To answer this question, scientists from the Max Planck Institute for Chemical Ecology and the CNRS Institute of Plant Molecular Biology/University of Strasbourg have studied the ecological model plant Nicotiana attenuata after attack by two different herbivores. The larvae of the tobacco hawk moth are specialists that only feed on nightshade plants and are generally well adapted to the defenses of their food plants, while the caterpillars of the African cotton leafworm are generalists and can feed on many different plants; however, they are less adapted to individual plant species and their defensive compounds. The scientists used mass spectrometry to analyze known as well as new and unknown metabolites that plants formed after herbivore attack and used statistical principles of information theory for their data evaluation. Modern methods of mass spectrometry allow for an unbiased measurement of as many substances as possible. "What is then needed is defining a mean of statistically scoring metabolic diversity within a plant extract and compare it across multiple experimental conditions and for different plant species. In addition, it is crucial to identify compounds present in a given plant sample which remains a cornerstone challenge in metabolomics. In this study, we provide such an approach combining innovations in computational metabolomics and the use of statistical concepts developed as a part of information theory and applied this approach to test the predictions of plant defense theories," explains Emmanuel Gaquerel, one of the study leaders.
“The computational workflow that allowed for unbiased and holistic analysis of plant metabolism described in our paper clearly shows that Nicotiana attenuata’s metabolic changes when attacked by both generalist and specialist caterpillars is highly directional,” Ian Baldwin, one of the senior authors, summarizes the results of the study. The study thus backs up the theory of optimal defense: plants reorganize their metabolism in a way that is directional towards the formation of defensive substances.
“It came as a surprise to us that statistical indices obtained for metabolic profiles resulting from feeding by the two herbivores, a nocturnal feeding generalist and a nightshade specialist, largely overlapped despite their distinct feeding behaviors,” Dapeng Li, the first author of the study, says. In order to find out how this defense strategy evolved and which compounds provide a crucial contribution to its success, the scientists used plants in which a trait had been genetically modified, as well as plant populations of the same species and various closely related species. They discovered that the metabolic changes in response to herbivore attack are primarily controlled by marginal modifications in the signaling cascade of plant hormones, in particular of jasmonic acid.
In further experiments, the researchers want to apply this computational workflow to understand how circadian and diurnal patterns influence metabolism. This is a fundamental problem for all organisms that are directly dependent on sunlight for their nutrition, but which is only available at certain times of the day, due to the earth’s rotation around the sun.
Original Publication:
Li, D., Halitschke, R., Baldwin, I. T., Gaquerel, E. (2020). Information theory tests critical predictions of plant defense theory for specialized metabolism. Science Advances 6: eaaz0381
https://doi.org/10.1126/sciadv.aaz0381
Statistische Analysen von pflanzlichen Inhaltsstoffen erlauben erstmals soliden Test von Theorien der Pflanzenabwehr
Hochdurchsatzauswertungen von Stoffwechselprodukten des Kojotentabaks belegen, dass komplexe Stoffwechseländerungen nach Insektenbefall zielgerichtet zur Produktion von Abwehrstoffen erfolgen.
Wird die chemische Verteidigung von Pflanzen zielgerichtet gegen Schädlinge aktiviert oder sind pflanzliche Stoffwechselveränderungen zufällig und wirken sich auf diese Weise negativ auf Fraßfeinde aus? Wissenschaftler des Max-Planck-Instituts für chemische Ökologie und des CNRS-Instituts für Molekulare Pflanzenbiologie/Universität Straßburg in Frankreich testeten diese seit Langem unbestätigten Hypothesen anhand des Kojotentabaks und seiner engen Verwandten. Dabei kombinierten sie umfangreiche Messungen bekannter und unbekannter pflanzlicher Stoffwechselprodukte mittels Massenspektrometrie mit statistischen Annahmen aus der Informationstheorie. Die Ergebnisse zeigen, dass der Stoffwechsel bei Befall zielgerichtet zur Bildung von effektiven Abwehrstoffen gesteuert wird. Zudem ergab ein vergleichender Ansatz verschiedener Populationen und eng verwandter Arten, dass die Menge bestimmter Pflanzenhormone für die gerichtete pflanzliche Antwort auf den Angreifer entscheidend ist. (Science Advances, doi: 10.1126/sciadv.aaz0381, Juni 2020).
Alle Lebewesen auf der Erde können in zwei große Gruppen unterteilt werden: diejenigen, die ihre Nahrung selbst aus abiotischen Quellen, wie Licht, herstellen, und diejenigen, die andere Lebewesen fressen. Die unterschiedlichen Ernährungsweisen haben Auswirkungen auf den Stoffwechsel. Pflanzen, die ihre Energie aus Licht gewinnen, stellen viel größere Vielfalt an Stoffwechselprodukten her als Lebewesen, die andere fressen. Schon lange fragten sich Wissenschaftler, welche evolutionären Kräfte hinter diesem Unterschied stecken. Bereits in den 50er Jahren wurde die Vermutung geäußert, dass Pflanzen bestimmte Inhaltsstoffe unter anderem zu ihrer Verteidigung nutzen. Dabei gibt es zwei unterschiedliche Theorien, wie die Produktion solcher Abwehrstoffe erfolgt: Pflanzen richten ihren Stoffwechsel so aus, dass sie Verbindungen mit Abwehrfunktion entsprechend der Wahrscheinlichkeit eines zukünftigen Angriffs produzieren. Diese Theorie heißt „optimale Verteidigung“. Im Gegensatz dazu gibt es eine zweite Theorie, die davon ausgeht, dass Pflanzen ihren Stoffwechsel zufällig ändern. Für Pflanzenfresser ist es daher nicht vorhersehbar, welche Stoffe gebildet werden: Sie können sich nicht an die pflanzliche Verteidigung anpassen. Man spricht auch von der Theorie des sich bewegenden Ziels, denn die Abwehr ist nicht zielgerichtet, sondern trifft Angreifer wahllos.
Auch wenn einzelne Abwehrstoffe, die nach Befall gebildet werden, inzwischen gut charakterisiert sind, konnte bislang nicht experimentell getestet werden, welche Theorie zutrifft. Um diese Frage zu beantworten haben Wissenschaftler vom Max-Planck-Instituts für chemische Ökologie in Jena und des CNRS-Instituts für Molekulare Pflanzenbiologie/Universität Straßburg jetzt die ökologische Modellpflanze Nicotiana attenuata (Kojotentabek) nach Befall durch zwei unterschiedliche Fraßfeinde untersucht. Die Raupen des Tabakschwärmers sind dabei Spezialisten, die nur an Nachtschattengewächsen fressen und generell gut an die Abwehrstoffe ihrer Nahrung angepasst sind, während die Raupen des Afrikanischen Baumwollwurms Generalisten sind und viele unterschiedliche Pflanzen fressen können, dadurch aber weniger an einzelne Pflanzenarten und deren Abwehrstoffe angepasst sind. Die Wissenschaftler analysierten mittels Massenspektrometrie bekannte, aber auch neue und unbekannte Stoffwechselprodukte, die Pflanzen nach Raupenfraß bildeten, und nutzten ein statistisches Prinzip der Informationstheorie für ihre Datenauswertung. Moderne Methoden der Massenspektrometrie erlauben es, unvoreingenommen so viele Substanzen wie möglich zu messen. „Was man dann braucht, ist eine Vorgehensweise, wie man die Daten aus verschiedenen methodischen Ansätzen und Pflanzenarten miteinander vergleichen kann. Außerdem ist es entscheidend, die gefundenen Substanzen zu identifizieren, was auf dem Gebiet der Metabolomik nach wie vor eine grundlegende Herausforderung ist. In dieser Studie haben wir einen neuen Ansatz für die computergestützte Auswertung dieser Daten entwickelt und diesen Ansatz angewendet, um damit Vorhersagen zu Theorien der pflanzlichen Abwehr zu testen“, erläutert Emmanuel Gaquerel, einer der Studienleiter.
„Der rechnerische Workflow, der eine unvoreingenommene und ganzheitliche Analyse des Pflanzenstoffwechsels ermöglicht, zeigt deutlich, dass die Stoffwechselveränderungen in Pflanzen des Kojotentabaks, die von Raupen des Tabakschwärmers oder des Baumwollwurms angegriffen wurden, direkte Antworten auf den Befall sind“, fasst Ian Baldwin, einer der beiden Hauptautoren, die Ergebnisse der Studie zusammen. Die Studie untermauert also die Theorie der optimalen Abwehr: Pflanzen reorganisieren ihren Stoffwechsel zielgerichtet für die Bildung von Abwehrsubstanzen.
„Zu unserer Überraschung beobachteten wir, dass es bei den Stoffwechselprofilen kaum Unterschiede gab, wenn die Tabakpflanzen von spezialisierten Tabakschwärmern oder allesfressenden Baumwollwürmern angegriffen wurden, obwohl das Fressverhalten der beiden Schädlingsarten sehr unterschiedlich ist“, führt Dapeng Li, der Erstautor der Studie, weiter aus. Um herauszufinden, wie sich diese Strategie der Abwehr entwickelt hat und welche Stoffe dazu einen entscheidenden Beitrag leisten, nutzten die Wissenschaftler Pflanzen, bei denen ein Merkmal genetisch verändert worden war, sowie Pflanzenpopulationen derselben Art und verschiedener eng verwandte Arten. Dabei stellten sie fest, dass die Änderungen im Stoffwechsel als Reaktion auf Raupenfraß primär durch geringfügige Veränderungen in der Signalkette der Pflanzenhormone, insbesondere des Pflanzenhormons Jasmonsäure, gesteuert werden.
In weiteren Studien möchten die Wissenschaftler nun den neuen computergestützten Workflow anwenden, um zu verstehen, wie die innere Uhr und der Tag-Nacht-Rhythmus der Pflanzen den Stoffwechsel beeinflussen. Denn dabei handelt es sich um ein fundamentales Problem für alle Lebewesen, die für ihre Ernährung direkt auf das Sonnenlicht angewiesen sind, das aber durch die Erdrotation um die Sonne nur zu bestimmten Zeiten zur Verfügung steht.
Originalveröffentlichung:
Li, D., Halitschke, R., Baldwin, I. T., Gaquerel, E. (2020). Information theory tests critical predictions of plant defense theory for specialized metabolism. Science Advances 6: eaaz0381
https://doi.org/10.1126/sciadv.aaz0381