Würzburg, Germany
August 6, 2012
Broccoli and other plants use mustard oils to ward off pests. These natural substances are also thought to have a preventive effect on cancer. A German-Danish team is now presenting new findings about mustard oils in plant science in “Nature” – with interesting prospects for agriculture.
Plants produce a large variety of substances that are often highly prized by humans, such as caffeine and essential oils. Many substances derived from plants add special flavors to meals, and quite a number are regarded as health-promoting. This also applies to mustard oils, which make mustard spicy and give brassicas their unique aroma.
When caterpillars or other hungry insects feed on glucosinolate-containing plants like broccoli, the glucosinolates get in contact with the enzyme myrosinase, that releases mustard oils. These ward off the insects. Picture: Dietmar Geiger
Mustard oils are reputed to be able to prevent cancer. There are various signs to support this notion. “For example, it is known that the constituents of broccoli kill off the bacterium Helicobacter pylori, which can trigger stomach ulcers and cancer,” says Professor Rainer Hedrich, plant scientist at the University of Würzburg.
Mustard oils as protection against enemies
Of course, plants do not synthesize such special constituents to protect humans. Instead, they use them to keep microbes and other enemies at bay. Often, they only use their chemical mace in an emergency. The pungent and spicy mustard oils, for instance, are only produced if the plant is injured, say, by an insect munching on it. Only then do the precursors of the mustard oils, the glucosinolates, come into contact with an enzyme that releases the mustard oils. This effect is familiar to anyone who has ever bitten into a radish.
Hungry insects tend to seek out the nutritious leaves and seeds. So, it is no wonder that the plant accumulates particularly large quantities of glucosinolates in these parts. The leaves can produce the deterrents themselves, but the maturing seeds cannot. “They have to import the glucosinolates, and this is not possible without special transport proteins,” says Professor Dietmar Geiger, plant physiologist at the University of Würzburg.
Prospects for agriculture
Until recently, virtually nothing was known about these vital transporters and their genes. But a research team from Copenhagen, Würzburg, and Madrid has now identified them. The results have been published in the journal “Nature”, giving them great prominence because they could have a far-reaching impact on agriculture.
Hedrich explains: “This paves the way for deliberately cultivating plants whose glucosinolate content and composition are tailored to the health of humans.” One such plant might be broccoli, optimized to combat the stomach bacterium Helicobacter.
How the results were attained
As the object of their analysis, the international research team used the plant Arabidopsis thaliana. Scientists know all there is to know about the genetic material of this model plant; it is also a “little sister” of cabbage, mustard, and rapeseed – it too contains glucosinolates and their transporters.
How did the scientists proceed? First of all, they applied a cellular biological approach. Using eggs from the South African clawed frog as a “test tube”, they conducted an assay to identify the genes needed to import and accumulate glucosinolates. In the end, the Danish team attributed this to two genes.
It was now the turn of the transporter specialists from Würzburg with their biophysical research methods – Professor Dietmar Geiger, in particular. They shed light on the mechanism that is used by these nanomachines sitting in the cell membrane to draw energy and transport the glucosinolates.
In the meantime, Barbara Ann Halkier from Copenhagen had isolated an Arabidopsis mutant in which neither transporter works: the plant had no glucosinolates whatsoever in its seeds. This proved that the researchers had indeed deciphered the genetic code and the function of the glucosinolate transporters that are so important to the survival of plants containing mustard oil.
The international research team
The team led by Professor Barbara Ann Halkier at the University of Copenhagen comprises experts in the field of glucosinolate metabolism. Professor Rainer Hedrich and Professor Dietmar Geiger from Würzburg are specialists in transport proteins in plants. The final member of this group of experts is former Würzburg plant scientist Ingo Dreyer, who is now a professor at the University of Madrid.
“NRT/PTR transporters essential for allocation of glucosinolate defense compounds to seeds”, Hussam Hassan Nour-Eldin, Tonni Grube Andersen, Meike Burow, Svend Roesen Madsen, Morten Egevang Jørgensen, Carl Erik Olsen, Ingo Dreyer, Rainer Hedrich, Dietmar Geiger, and Barbara Ann Halkier, Nature (2012), published online 05 august, DOI: 10.1038/nature11285
Brokkoli & Co.: Senföle als chemische Keule
Mit Senfölen wehren Brokkoli und andere Pflanzen Schädlinge ab. Zudem sollen diese Naturstoffe vorbeugend gegen Krebs wirken. Ein deutsch-dänisches Team präsentiert nun in „Nature“ neue pflanzenwissenschaftliche Erkenntnisse über Senföle – mit interessanten Perspektiven für die Agrarwirtschaft.
Pflanzen produzieren eine große Vielfalt an Stoffen, die vom Menschen oft sehr geschätzt werden, wie Koffein oder ätherische Öle. Viele Pflanzenstoffe sorgen beim Essen für besondere Geschmackserlebnisse, viele gelten als gesund. Das trifft auch auf die Senföle zu, die den Senf scharf machen und Kohlgewächsen ihr besonderes Aroma verleihen.
Senföle stehen im Ruf, Krebs verhindern zu können. Darauf gibt es verschiedene Hinweise. „Von Broccoli ist beispielweise bekannt, dass seine Inhaltsstoffe das Bakterium Helicobacter pylori abtöten, das Magengeschwüre und Krebs auslösen kann“, sagt Professor Rainer Hedrich, Pflanzenwissenschaftler an der Uni Würzburg.
Senföle als Schutz gegen Feinde
Natürlich synthetisieren Pflanzen solche besonderen Inhaltsstoffe nicht, um den Menschen zu schützen. Vielmehr halten sie sich damit selbst Mikroben und andere Feinde vom Leib. Oft setzen sie ihre chemischen Keulen nur im Notfall ein. Die stechend riechenden und scharf schmeckenden Senföle etwa entstehen erst, wenn die Pflanze zum Beispiel durch ein fressendes Insekt verletzt wird. Erst dann kommen Vorstufen der Senföle, die Glucosinolate, mit einem Enzym in Kontakt, das die Senföle freisetzt. Diesen Effekt kennt jeder, der schon einmal in ein Radieschen gebissen hat.
Hungrige Insekten haben es vor allem auf die nahrhaften Blätter und Samen abgesehen. Kein Wunder also, dass die Pflanze in diesen Teilen besonders große Mengen von Glucosinolaten anhäuft. Die Blätter können die Abwehrstoffe selber produzieren, die heranreifenden Samen aber nicht. „Sie müssen die Glucosinolate importieren, und das geht nicht ohne spezielle Transportproteine“ so Professor Dietmar Geiger, Pflanzenphysiologe an der Uni Würzburg.
Perspektiven für die Agrarwirtschaft
Bislang war über diese lebenswichtigen Transporter und ihre Gene fast nichts bekannt. Doch ein Forschungsteam aus Kopenhagen, Würzburg und Madrid hat sie jetzt identifiziert. Die Ergebnisse sind in der Zeitschrift „Nature“ und damit sehr hochrangig veröffentlicht – denn sie könnten weitreichende Auswirkungen auf die Agrarwirtschaft haben.
Hedrich erklärt: „Nun steht der Weg offen, um gezielt Pflanzen zu züchten, deren Glucosinolat-Gehalte und Zusammensetzung auf die Gesundheit des Menschen zugeschnitten sind.“ Denkbar seien zum Beispiel Brokkoli-Pflanzen, die für die Bekämpfung des Magenbakteriums Helicobacter optimiert sind.
Wie die Ergebnisse zu Stande kamen
Als Analyseobjekt hat das internationale Forschungsteam die Ackerschmalwand (Arabidopsis thaliana) verwendet. Das Erbgut dieser Modellpflanze ist vollständig bekannt; zudem ist sie eine „kleine Schwester“ von Kohl, Senf und Raps – auch sie enthält Glucosinolate samt deren Transportern.
Wie gingen die Wissenschaftler vor? Sie verwendeten zunächst einen zellbiologischen Ansatz. Eier des südafrikanischen Krallenfroschs dienten ihnen als „Reagenzglas“, um in einem Reihentest die Gene zu identifizieren, die für den Import und die Anhäufung von Glucosinolaten nötig sind. Am Ende machte das dänische Team zwei Gene dafür verantwortlich.
Nun waren die Transporter-Spezialisten aus Würzburg mit ihren biophysikalischen Untersuchungsmethoden an der Reihe, allen voran Professor Geiger. Sie klärten den Mechanismus, über den diese in der Zellmembran sitzenden Nanomaschinen ihre Energie beziehen und die Glucosinolate transportieren.
Zwischenzeitlich hatte Barbara Ann Halkier aus Kopenhagen eine Arabidopsis-Mutante isolierte, bei der beide Transporter nicht funktionieren: Die Pflanze hatte überhaupt keine Glucosinolate in den Samen. Damit war bewiesen, dass die Forscher tatsächlich den genetischen Code und die Funktion der Glucosinolat-Transporter entschlüsselt hatten, die für das Überleben senfölhaltiger Pflanzen so wichtig sind.
Das internationale Forschungsteam
Die Arbeitsgruppe um Professorin Barbara Ann Halkier an der Universität Kopenhagen gehört zu den Experten auf dem Gebiet des Glucosinolat-Stoffwechsels. Die Würzburger Professoren Rainer Hedrich und Dietmar Geiger sind Fachmänner für pflanzliche Transportproteine. Komplettiert wird die Expertenrunde von dem „Alt-Würzburger“ Pflanzenwissenschaftler Ingo Dreyer, der jetzt Professor an der Universität von Madrid ist.
“NRT/PTR transporters essential for allocation of glucosinolate defense compounds to seeds”, Hussam Hassan Nour-Eldin, Tonni Grube Andersen, Meike Burow, Svend Roesen Madsen, Morten Egevang Jørgensen, Carl Erik Olsen, Ingo Dreyer, Rainer Hedrich, Dietmar Geiger, and Barbara Ann Halkier, Nature (2012), online publiziert am 5. August, DOI: 10.1038/nature11285