Wenn Pflanzen rot sehen - Biologische Experimente und mathematische Modellierung zeigen, wie Pflanzen dunkelrotes Licht wahrnehmen
Tübingen, Germany
September 7, 2011
Pflanzen können dunkelrotes Licht sehen. Das ist für sie überlebens-wichtig, wenn sie im Schatten anderer Pflanzen gedeihen wollen: Dort ist das Lichtspektrum reich an dunkelrotem Licht, aber besitzt kaum Rot- und Blauanteile. Forscher der Universität Tübingen und der Universität Freiburg haben nun herausgefunden, wie die Wahrnehmung von dunkel-rotem Licht bei Pflanzen funktioniert. In der aktuellen Ausgabe der Fach-zeitschrift "Cell" präsentieren sie, mit welchen Tricks Pflanzen dabei arbeiten.
Menschen und Tiere haben in Sinneszellen der Retina lichtempfindliche Proteine. Ähnlich besitzen auch Pflanzen Proteine, die Licht wahrnehmen – sogenannte Photorezeptoren. Phytochrome sind pflanzliche Photorezeptoren, die am besten durch Rotlicht aktiviert werden und deshalb ideal geeignet sind, den Rot-Anteil im Lichtspektrum wahrzunehmen. Interessanterweise haben Pflanzen für die Wahrnehmung von dunkelrotem Licht keinen neuen Photorezeptor entwickelt, sondern verwenden ebenfalls ein Phytochrom, obwohl dieses aufgrund seiner photophysikalischen Eigenschaften eigentlich nur schlecht dafür geeignet ist. Dieses Problem war seit langem bekannt, konnte bisher aber nicht gelöst werden.
Die Forscher konnten nun zeigen, wie Pflanzen mit Hilfe von Phytochrom A, einem bestimmten Phytochrom, dunkelrotes Licht wahrnehmen. Die Arbeitsgruppen von Dr. Andreas Hiltbrunner vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen und Prof. Eberhard Schäfer vom Institut für Biologie II der Universität Freiburg konnten schon früher nachweisen, dass Phytochrom A bei der Wahrnehmung von dunkelrotem Licht aus dem Cytosol - dem Bereich außerhalb des Zellkerns - in den Zellkern transportiert wird, und dass dafür sogenannte Transporthelferproteine benötigt werden. In der neuen Arbeit konnte nun die Tübinger Arbeitsgruppe um Dr. Hiltbrunner zeigen, dass diese Transporthelferproteine Phytochrom A im Cytosol binden, dieses in den Zellkern bringen und sich dort wieder von diesem lösen, bevor sie selber wieder ins Cytosol zurückkehren.
Die Arbeitsgruppe konnte auch nachweisen, dass eine leicht veränderte Variante von Phytochrom A, die permanent an die Transporthelferproteine bindet, kaum in den Zellkern transportiert wird und die Wahrnehmung von dunkelrotem Licht fast vollständig blockiert. Der Grund dafür ist, dass die veränderte Variante von Phytochrom A den Zyklus von Bindung an die Transporthelferproteine im Cytosol und Loslösen von diesen im Kern stört. Dr. Julia Rausenberger aus der Arbeitsgruppe von Dr. Christian Fleck vom Zentrum für Biosystemanalyse der Universität Freiburg konnte mit mathematischen Modellen bestätigen, dass genau dieser Transportzyklus wichtig ist für die Funktion von Phytochrom A. Mit Hilfe von Computersimulationen hat sie eine Million Kombinationen von Reaktionskonstanten überprüft und gefunden, dass die Bindung von Phytochrom A an die Transport-helferproteine im Cytosol und die Loslösung von diesen im Zellkern dafür verantwortlich sind, dass Phytochrom A unter anderem optimal als Photorezeptor für dunkelrotes Licht funktioniert. Die mathematische Analyse vereinfachter Reaktionsmodelle identifizierte weitere Schlüsselkomponenten, die für die Wirksamkeit von Phytochrom A in dunkelrotem Licht wichtig sind, und die von Dr. Hilt-brunners Arbeitsgruppe auch experimentell in der Pflanze nachgewiesen werden konnten.
Titel der Originalveröffentlichung:
Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J, Schäfer E, Fleck C, Hiltbrunner A (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A's response profi-le to far-red light. Cell 146, 813-825.
More news from: University of Tübingen
Website: http://www.uni-tuebingen.de Published: September 8, 2011 |
The news item on this page is copyright by the organization where it originated Fair use notice |