home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Structure of wheat immune protein resolved – important tool in the battle for food security
Struktur von Weizen-Immunprotein entschlüsselt – ein wertvolles Instrument im Kampf um die Ernährungssicherheit


Germany
September 26, 2022

Scientists from the Max Planck Institute for Plant Breeding Research and the University of Cologne in Germany together with colleagues from China have unravelled how wheat protects itself from a deadly pathogen. Their findings, published in the journal Nature, could be harnessed to make important crop species more resistant to disease.
 

© A. Förderer
© A. Förderer
 

As a staple food for 40 % of the world’s population, it is hard to overstate the importance of wheat for food security.

Crop resilience in a changing climate and resistance to infectious diseases will be the limiting factors for future food stability. In the case of wheat, one of the most economically significant pathogens is stem rust, a vicious fungus which can have devastating effects on yields.

Although stem rust has been infecting wheat since pre-Christian times, through the efforts of breeders and plant pathologists it had been possible to prevent any significant epidemics in the world’s major wheat growing areas in the last 50 years of the 20th century. Unfortunately, this rosy picture was shattered in 1998, with the emergence of a new, highly virulent variant of wheat stem rust in Uganda. Ug99, as it is known, can attack up to 80% of the world’s wheat varieties resulting, in some cases, in complete loss of yield from infected fields. In seeking to provide crops with resistance against new and emerging plant pathogens, plant scientists and breeders often scour wild varieties of some of our staple crops for genes that may provide effective immunity. The emergence of Ug99 lent particular impetus to such efforts and led to the identification of Sr35, a gene which protects against Ug99 when introduced into bread wheat.

Now, scientists led by Jijie Chai and Paul Schulze-Lefert from the University of Cologne and the Max Planck Institute for Plant Breeding Research in Cologne, Germany, and Yuhang Chen from the Chinese Academy of Sciences, China, have decoded the structure of the Sr35 wheat protein. This allowed them to explain how Sr35 protects Einkorn wheat against Ug99.

Sr35 is an example of a nucleotide-binding leucine-rich repeat (NLR) receptor inside plant cells that detects the presence of invading pathogens. NLR activation is triggered by the recognition of pathogen “effectors”, small proteins that are delivered into plant cells by invading microorganisms in order to weaken the plant. Each NLR typically binds to one type of effector.

When Sr35 is activated, five receptors assemble together into a large protein complex, which the researchers term the “Sr35 resistosome”. Such resistosomes have the ability to act as channels in the plant cell membrane. This channel activity sets in motion powerful immune responses that culminate in the suicide of plant cells at the site of infection as a sort of self-sacrifice to protect the rest of the plant.

In this study, the researchers succeeded for the first time in resolving the structure and describing the immune function of a resistosome from a crop species.

The scientists began by synthesizing both Sr35 and its corresponding Ug99 effector in insect cells, a strategy that allowed them to isolate and purify large amounts of Sr35 resistosomes, and used cryogenic electron microscopy, a technique in which samples are frozen to cryogenic temperatures allowing for the determination of biomolecular structures at atomic resolution. Alexander Förderer, who spearheaded the study says: “In the structure of Sr35 we could identify those parts of the protein that are important for Ug99 effector recognition. With this insight, I hope that we can generate new NLRs that can be applied in the field to protect elite wheat varieties against Ug99 and in this way contribute to global food security.”

Armed with their knowledge of the structure of the Sr35 resistosome, Alexander Förderer and his co-authors Ertong Li and Aaron W. Lawson set about determining whether they could now repurpose non-functional receptors of susceptible elite varieties of barley and wheat to recognize the Ug99 effector. They alighted on two proteins that, while similar to Sr35, do not recognize Ug99. When they swapped in the elements of Sr35 known to contact the Ug99 effector, the scientists could turn these proteins into receptors for the Ug99 effector.

According to Paul Schulze-Lefert, “This study also illustrates how nature has used a common design principle to build immune receptors. At the same time, these receptors have evolved in such a way that they have retained the flexibility to generate new receptor variants that can provide immunity to other microbial pathogens such as viruses, bacteria or nematodes".

Jijie Chai points out that the insights gained in this study “open up the opportunity to improve crop resistance by engineering plant resistance proteins that recognise an array of different pathogen effectors.”


 

Struktur von Weizen-Immunprotein entschlüsselt – ein wertvolles Instrument im Kampf um die Ernährungssicherheit

Ein internationales Forschungsteam des Max-Planck-Instituts für Pflanzenzüchtungsforschung, der Universität zu Köln und der Chinesischen Akademie der Wissenschaften, haben entschlüsselt wie Weizen sich vor einem tödlichen Krankheitserreger schützt. Ihre Erkenntnisse, die jetzt in der Fachzeitschrift Nature veröffentlicht wurden, können zu einem wertvollen Instrument werden, um Nutzpflanzen widerstandsfähiger gegen Krankheiten zu machen.

Weizen ist eine der wichtigsten Grundlagen für die weltweite Ernährungssicherheit. Er stellt für 40 % der Weltbevölkerung ein Grundnahrungsmittel dar.

Vor diesem Hintergrund werden die Widerstandsfähigkeit von Kulturpflanzen in einem sich verändernden Klima und die Resistenz gegen Infektionskrankheiten die entscheidenden Faktoren für die zukünftige Ernährungssicherheit auf unserem Planeten sein. Weizen ist anfällig für einen der wirtschaftlich bedenklichsten Krankheitserreger, der Getreideschwarzrost. Dies ist ein tückischer Pilz, der verheerende Auswirkungen auf die Ernteerträge haben kann.

Der Getreideschwarzrost plagte den Weizenanbau schon seit Jahrtausenden. In den letzten 50 Jahren des 20. Jahrhunderts gelang es Züchter:innen und Pflanzenpatholog:innen mit ihrer Arbeit jedoch, dynamische Epidemien in den global wichtigsten Weizenanbauregionen zu verhindern. Leider wurden diese positiven Aussichten 1998 durch das Auftreten einer neuen, hochvirulenten Variante des Getreideschwarzrosts in Uganda erschüttert. Die neue Variante des Getreideschwarzrosts, die Ug99 genannt wird, kann bis zu 80 % der bekannten Weizensorten befallen. Dadurch können vollständige Ernteverluste auf infizierten Feldern entstehen.

Auf der Suche nach Resistenzen gegen neue Krankheitserreger durchforsten Pflanzenwissenschaftler:innen und -züchter:innen häufig das Erbgut von Wildsorten unserer Grundnahrungsmittel nach Genen, die eine wirksame Immunität verleihen. Das Auftreten von Ug99 verlieh solchen Bemühungen besondere Dringlichkeit und führte zur Identifizierung des Gens Sr35. Es schützt den Weizen-Urahnen Einkorn vor Ug99.

Jetzt haben Forschende unter der Leitung von Jijie Chai und Paul Schulze-Lefert von der Universität Köln und des Max-Planck-Instituts für Pflanzenzüchtungsforschung in Köln sowie Yuhang Chen von der Chinesischen Akademie der Wissenschaften die räumliche Struktur des Weizenproteins Sr35 entschlüsselt. Dadurch gelang es ihnen zu erklären, wie das Gen Sr35 dem Einkorn die Resistenz gegen Ug99 verleiht.

Sr35 gehört zu den nucleotide-binding leucine-rich repeat receptors (NLRs) in Pflanzenzellen, die die Anwesenheit von Krankheitserregern aufdecken. Die Immunantwort in der Pflanze wird ausgelöst indem NLRs sogenannte Pathogen -"Effektoren" erkennen. Effektoren sind kleine Proteine, die von eindringenden Mikroorganismen in die Zellen eingebracht werden, um die Pflanze zu schwächen. Typischerweise erkennt jeder NLR nur einen bestimmten Effektor.

Wird der Sr35-Rezeptor aktiviert, lagern sich fünf Rezeptoren aneinander. Sie bilden einen großen Proteinkomplex, den die Forscher das „Sr35-Resistosom“ nennen. Solche Resistosome haben die Fähigkeit als Kanal in der Pflanzenzellmembran zu fungieren, wodurch die Aktivierung starker Immunreaktionen in Gang gesetzt wird. Letztendlich führt dies zum Absterben von Pflanzenzellen am Ort der Infektion - eine Art lokale Selbstaufopferung zum Schutz der restlichen Pflanze.

In dieser Studie konnten Forschende zum ersten Mal eine Resistosom-Struktur einer Nutzpflanze entschlüsseln und diese Immunprozesse beschreiben.

Die Forschenden synthetisierten sowohl das Protein Sr35 als auch den entsprechenden Ug99-Effektor in Insektenzellen, eine Strategie, die es ihnen ermöglichte, große Mengen von Sr35-Resistosomen zu isolieren und aufzureinigen. Mit Hilfe der kryogenen Elektronenmikroskopie, einer Technik, bei der die Proben blitzschnell auf extreme Temperaturen abgekühlt werden, lässt sich die räumliche Struktur von riesigen Biomolekülen wie dem Resistosom mit atomarer Auflösung entschlüsseln. Alexander Förderer, der die Studie initiierte und anleitete, erklärt: "In der räumlichen Struktur des Sr35-Resistosoms konnten wir die Teile des Proteins identifizieren, die für die Erkennung des Ug99-Effektors wichtig sind. Mit diesen Erkenntnissen konnten wir neue NLRs entwickeln. Ich hoffe eines Tages können solche neuen NLRs Anwendung auf dem Feld finden um Eliteweizensorten gegen Ug99 zu schützen. Unsere Forschung könnte so einen wichtigen Beitrag zur Ernährungssicherheit auf dem Planeten leisten."

Ausgestattet mit ihrem Wissen über die Struktur des Sr35-Resistosoms widmeten sich Alexander Förderer und seine Co-Autoren Ertong Li und Aaron W. Lawson der Aufgabe, Rezeptoren anfälliger Sorten von Gerste und Weizen umzufunktionieren, und zwar so, dass diese den Ug99-Effektor erkennen. Sie selektierten zwei NLR Proteine, die Sr35 zwar ähnelten, aber Ug99 nicht erkannten. Als sie die Elemente von Sr35 einfügten, von denen nun bekannt war, dass sie mit dem Ug99-Effektor interagieren, konnten die Wissenschaftler und Wissenschaftlerinnen diese Proteine in wertvolle Rezeptoren für den Ug99-Effektor umwandeln.

Paul Schulze-Lefert erläutert: "Diese Studie zeigt auch, wie die Natur ein gemeinsames Konstruktionsprinzip verwendet hat, um Immunrezeptoren zu entwickeln. Zugleich evolvierten solche Rezeptoren auf eine Weise, dass sie die Flexibilität beibehalten haben neue Rezeptor-Varianten zu generieren, welche gegen andere mikrobielle Krankheitserreger wie Viren, Bakterien oder Nematoden immun machen."

Jijie Chai weist darauf hin, dass die in dieser Studie gewonnenen Erkenntnisse "die Möglichkeit eröffnet, die Resistenz von Nutzpflanzen zu verbessern, indem pflanzliche Resistenzproteine entwickelt werden, die eine Reihe verschiedener Pathogen-Effektoren erkennen".

 



More news from: Max Planck Institute for Plant Breeding Research


Website: http://www.mpiz-koeln.mpg.de

Published: September 26, 2022

The news item on this page is copyright by the organization where it originated
Fair use notice


Copyright @ 1992-2024 SeedQuest - All rights reserved