Munster, Germany
January 24, 2020
Researchers discover vaccine to strengthen the immune system of plants.
Like animals and humans, plants possess a kind of immune system. It can e.g. recognize pathogenic fungi by the chitin in their cell walls, triggering disease resistance. Some fungi hide from the immune system by modifying some of the chitin building blocks, converting chitin into chitosan. Researchers of the University of Münster now found that plants can react to a certain pattern in this chitosan, stimulating their immune system. They are already developing a chitosan-based plant immune-stimulant in order to reduce the use of chemical pesticides in agriculture. Their results are published in JACS (Journal of the American Chemical Society).
Background
Chitosans, so-called polysaccharides, are probably the most versatile and promising functional biopolymers. Chitosans can make plants resistant to diseases, promote their growth, and protect them from heat or drought stress. Under chitosan dressings, even large wounds can heal without scars, chitosan nanoparticles can transport drugs across the blood/brain barrier, and chitosans can replace antibiotics in animal fattening as antimicrobial and immunostimulating feed additives. But of course, chitosans are not miracle cures either. “There are many different chitosans and for each individual application, exactly the right one must be found to make it work. Until now, we knew far too little about their effects and how they can be used effectively. With our research, we have now come a step closer to this understanding”, explains Prof Bruno Moerschbacher from the Institute for Biology and Biotechnologies of Plants at Münster University.
Chitosans consist of chains of different lengths of a simple sugar called glucosamine. Some of these sugar molecules carry an acetic acid molecule, others do not. Chitosans therefore differ in three factors: the chain length and the number and distribution of acetic acid residues along the sugar chain. For about twenty years, chemists have been able to produce chitosans of different chain lengths and with different amounts of acetic acid residues, and biologists have then investigated their biological activities. Thus, an understanding slowly developed of how these two factors influence the antimicrobial or plant-strengthening effect of chitosans. Such well-characterized chitosans, now called second-generation chitosans, are currently used as the basis for new chitosan-based products such as the plant biostimulant "Kitostim" which was developed based on the research results of the Münster team. It promotes growth and development of plants, and it strengthens them against disease and heat stress.
Bruno Moerschbacher suspected early on that the third structural factor, the distribution of acetic acid residues along the sugar chain, also plays a decisive role in determining biological activities. However, this hypothesis could not be tested for a long time because the acetic acid residues are randomly distributed in all chemically produced chitosans. As biochemists and biotechnologists, the members of his team have therefore used enzymes for the production of chitosans, i.e. the natural ‘tools’ involved in the biosynthesis of chitosan in chitosan-containing fungi. With their help, they have now succeeded in producing short chitosan chains, so-called oligomers, with a defined arrangement of acetic acid molecules, and tested their bioactivity.
For this test, the researchers used rice cells that they treated with chitosan oligomers to stimulate their immune system. When they used chitosan oligomers consisting of four sugar units (so-called tetramers) carrying only a single acetic acid residue, they found that the tetramer with the acetic acid residue at the first (‘left-most’) sugar unit (the so-called non-reducing end) had a strong immunostimulating effect, while the other three tetramers were less active or inactive. Thus, very clear differences in bioactivity were found between chitosans with the same chain length (four) and the same number of acetic acid residues (one) when they differed in the position of the acetic acid residue. The researchers led by Bruno Moerschbacher are currently testing the use of this tetramer as a kind of vaccine that stimulates the plants' natural immune system.
Outlook
Such a clear dependence of the bioactivity of a complex sugar on its molecular structure has almost never been observed before. The first and to date only example was human heparin, whose anticoagulant effect is based on a certain distribution of sulphuric acid residues along the sugar chain. It is now known that heparin achieves this effect by binding a coagulation factor to this specific binding site, thus inactivating it. And on the basis of this knowledge, it has been possible to develop anticoagulants with precisely dosed effects and without side effects, which are a blessing for e.g. dialysis patients. “It is now our hope that the precisely defined chitosans can be used in a similar way to enable, for example, scar-free wound healing under chitosan dressings," said Bruno Moerschbacher, whose research group is already collaborating with dermatologists and other biomedical experts.
Original publication
Basa S., M. Nampally, T. Honorato, S. N. Das, A. R. Podile, N. E. El Gueddari & B. M. Moerschbacher (2020) The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. Journal of the American Chemical Society (in press)
Further information
Die Sprache der Zucker entschlüsseln - Forscher entdecken Impfstoff zur Stärkung des Immunsystems von Pflanzen
Ähnlich wie Menschen und Tiere haben auch Pflanzen eine Art Immunsystem. Sie können zum Beispiel krankmachende Pilze am Chitin in den Pilzzellwänden erkennen und erfolgreich abwehren. Manche Pilze verstecken sich vor dem Immunsystem, indem sie einige der Chitin-Bausteine modifizieren: es entsteht Chitosan. Forscher der Westfälischen Wilhelms-Universität Münster (WWU) haben jetzt herausgefunden, dass Pflanzen auf ein ganz bestimmtes Muster in diesem Chitosan mit einer Stimulierung ihres Immunsystems reagieren. Sie arbeiten bereits daran, ein Immunstimulans für Pflanzen zu entwickeln, um den Einsatz chemischer Pestizide in der Landwirtschaft verringern zu können. Ihre Ergebnisse sind in der Fachzeitschrift JACS (Journal of the American Chemical Society) veröffentlicht.
Zum Hintergrund
Chitosane sind Polysaccharide, sogenannte Vielfachzucker, und es sind die wahrscheinlich vielfältigsten und vielversprechendsten funktionellen Biopolymere. Sie machen Pflanzen gegen Krankheiten resistent, fördern ihr Wachstum und schützen sie vor Hitze- oder Trockenstress. Chitosan-Verbände heilen großflächige Wunden, Nanopartikel aus Chitosan transportieren Medikamente über die Blut-Hirn-Schranke, und sie ersetzen als antimikrobielle und immunstimulierende Futtermittel-Zusatzstoffe Antibiotika in der Tiermast. Aber natürlich sind auch Chitosane keine Wundermittel. „Es gibt sehr viele verschiedene Chitosane, und für jede Anwendung muss genau das richtige Mittel gefunden werden, damit es wirkt. Bislang wussten wir noch viel zu wenig über ihre Wirkung, und wie sie effektiv eingesetzt werden können. Mit unserer Forschung sind wir diesem Verständnis nun ein ganzes Stück nähergekommen“, sagt Prof. Dr. Bruno Moerschbacher vom Institut für Biologie und Biotechnologien der Pflanzen der WWU.
Chitosane bestehen aus unterschiedlich langen Ketten eines Einfachzuckers namens Glukosamin. Manche dieser Zuckermoleküle tragen ein Essigsäuremolekül und andere nicht. Chitosane unterscheiden sich somit in drei Faktoren: der Kettenlänge, der Anzahl sowie der Verteilung der Essigsäurereste entlang der Zuckerkette. Seit mehr als 20 Jahren können Chemiker Chitosane unterschiedlicher Kettenlänge und mit unterschiedlich vielen Essigsäureresten herstellen. Biologen untersuchten daraufhin ihre biologischen Aktivitäten. So entwickelte sich ein Verständnis, wie diese beiden Faktoren die antimikrobielle oder die pflanzenstärkende Wirkung von Chitosanen beeinflussen. Solche gut charakterisierten Chitosane, die heute als Chitosane der zweiten Generation bezeichnet werden, dienen derzeit als Grundlage für neue Chitosan-basierte Produkte wie zum Beispiel das Pflanzen-Biostimulans "Kitostim", das auf der Grundlage der Forschungsergebnisse aus Münster entwickelt wurde. Es verbessert das Pflanzenwachstum und stärkt die Abwehrkräfte der Pflanzen gegen Krankheiten und Hitzestress.
Bruno Moerschbacher vermutet, dass auch der dritte strukturelle Faktor, die Verteilung der Essigsäurereste entlang der Zuckerkette, die biologischen Aktivitäten entscheidend mitbestimmt. Diese Hypothese konnte lange nicht getestet werden, da die Essigsäurereste bei allen chemisch hergestellten Chitosanen zufällig verteilt sind. Das Team um Bruno Moerschbacher benutzt nun in einem neuen Verfahren Enzyme für die Herstellung der Chitosane, also die natürlichen "Werkzeuge", die in Chitosan-haltigen Pilzen an der Biosynthese des Chitosans beteiligt sind. Mit deren Hilfe gelang es den münsterschen Wissenschaftlern, kurze Chitosan-Ketten, sogenannte Oligomere, mit definierter Anordnung der Essigsäuremoleküle herzustellen und diese auf ihre Bioaktivitäten zu testen.
Für diesen Test verwendeten die Forscher Reiszellen, die sie mit den Chitosan-Oligomeren behandelten, um deren Immunsystem zu stimulieren. Wenn sie dafür Chitosan-Oligomere aus vier Zuckerbausteinen, auch Tetramere genannt, die nur einen Essigsäurerest tragen, verwendeten, zeigte sich, dass das Tetramer mit dem Essigsäurerest an der ersten („linken“) Zuckereinheit, dem nicht-reduzierenden Ende, stark immunstimulierend wirkte, während die anderen drei Tetramere weniger aktiv oder inaktiv waren. Es zeigten sich dadurch deutliche Unterschiede in der Bioaktivität zwischen Chitosanen mit gleicher Kettenlänge von jeweils vier Zuckereinheiten und gleicher Anzahl an Essigsäureresten, nämlich einem, wenn sie sich in der Position des Essigsäurerests unterschieden. Die Forscher um Bruno Moerschbacher testen derzeit den Einsatz dieses Tetramers als eine Art Impfstoff, der gezielt das natürliche Immunsystem der Pflanzen stimuliert.
Ausblick
Eine solch klare Abhängigkeit der Bioaktivität eines komplexen Zuckers von seiner molekularen Struktur wurde noch fast nie beobachtet. Das erste und bis heute einzige Beispiel war das menschliche Heparin, dessen blutgerinnungshemmende Wirkung auf einer bestimmten Verteilung von Schwefelsäureresten entlang der Zuckerkette beruht. Heute weiß man, dass Heparin diese Wirkung durch Bindung und Inaktivierung eines Gerinnungsfaktors an diese spezifische Bindungsstelle erzielt. Durch dieses Wissen konnten Gerinnungshemmer mit genau dosierter Wirkung und ohne Nebenwirkungen entwickelt werden, die unter anderem für Dialysepatienten wichtig sind. „Unsere Hoffnung ist es jetzt, dass die genau definierten Chitosane in ähnlicher Weise verwendet werden können, um beispielsweise eine narbenfreie Wundheilung unter Chitosan-Verbänden zu ermöglichen“, sagt Bruno Moerschbacher, der mit seiner Arbeitsgruppe bereits mit Dermatologen und anderen biomedizinischen Experten zusammenarbeitet.
Originalpublikation
Basa S., M. Nampally, T. Honorato, S. N. Das, A. R. Podile, N. E. El Gueddari & B. M. Moerschbacher (2020) The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. Journal of the American Chemical Society (in press)
Links zu dieser Meldung