Weizen-Resistenzgen schützt auch Mais und Gerste gegen Pilze
Weizen-Resistenzgen schützt auch Mais und Gerste gegen Pilze
Zurich, Switzerland
January 29, 2019
Non-transgenic corn infested with corn smut in the field.
Von Maisbeulenbrand befallener, nicht-transgener Mais im Feld.
Universität Zürich
Plant researchers at the University of Zurich have developed transgenic corn and barley lines with improved resistance against several fungal diseases thanks to the wheat resistance gene Lr34. Following successful tests in the greenhouse, the researchers are now planning to carry out field trials at the Agroscope site in Zurich-Reckenholz.
The group of Beat Keller, professor at the Department of Plant and Microbial Biology at the University of Zurich (UZH), has been researching the immune system of wheat varieties – with which the plant fends off pests and disease – for many years. Their goal is to better understand the complex interactions between plants and pathogens. At the same time, the more resilient lines can be used in plant breeding to help prevent large-scale loss of crop as a result of fungal diseases.
Non-transgenic barley infested with powdery mildew in the greenhouse.
Von Echtem Mehltau befallene, nicht-transgene Gerste im Gewächshaus. - Universität Zürich
Field trials planned in Reckenholz
Hundreds of resistance genes that provide wheat varieties with protection against fungal pathogens are already known. One of these genes – the wheat resistance gene Lr34 identified by Keller and his team – is characterized by a long-lasting, partial effect against several fungal species. The UZH researchers want to find out whether this particular resistance gene also works when it comes to protecting corn and barley. Tests in the laboratory and in the greenhouse have shown that corn and barley lines genetically modified with Lr34 are indeed better protected against several fungal diseases. “We now want to verify the effect in the field and have submitted a request to the Federal Office for the Environment to carry out a field trial at the Agroscope site in Zurich-Reckenholz,” says Teresa Koller, who leads the planned field trials. They are planned from spring 2019 to autumn 2023.
Corn and barley with improved resistance against fungal disease
After the positive findings from the greenhouse trials, the researchers now want to test the protective effect outdoors: Lr34 corn plants against northern corn leaf blight (E. turcicum) and corn smut (U. maydis), and Lr34 barley plants against barley leaf rust (P. hordei) and powdery mildew (B. graminis f. sp. hordei). “We also want to investigate whether the genetic changes have an effect on other agronomic properties of the corn and barley lines, such as plant development and yield,” adds Koller.
Better understanding the immune system of plants
The Lr34 resistance gene has been extensively used for over a century in wheat breeding and cultivation. And yet, fungal pathogens have still not adapted to this resistance – in other words, Lr34 is as effective as ever. Many known resistance genes include a blueprint for receptors that enable the plants to recognize pathogens. The structure of Lr34 in contrast resembles what is known as an ABC transporter. These are membrane proteins that are responsible for transporting substrates across membranes to the inside of a plant cell or outside a cell.
Plants have developed a sophisticated immune system that allows them to distinguish between pathogenic microbes and those that are harmless or beneficial and then trigger the appropriate defense mechanism. “The main goal of the field trials is to improve our understanding of the function and effectiveness of Lr34,” says Teresa Koller, who already led the field trials with transgenic powdery mildew-resistant wheat lines from 2016 to 2018.
Literature:
Boni, R., Chauhan, H., Hensel, G., Roulin, A., Sucher, J., Kumlehn, J., Brunner, S., Krattinger, S.G. and Keller, B. Pathogen-inducible Ta -Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnol. J. 11 July 2017. DOI: 10.1111/pbi.12765
Sucher, J., Boni, R., Yang, P., Rogowsky, P., Büchner, H., Kastner, C., Kumlehn, J., Krattinger, S.G. and Keller, B. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol. J. 13 October 2016. DOI: 10.1111/pbi.12647
Risk, J.M., Selter, L.L., Chauhan, H., et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 28 May 2013. DOI: 10.1111/pbi.12077
Approval procedure
In December 2018, the University of Zurich submitted applications to the Federal Office for the Environment (FOEN) for approval of their experimental releases. Once the applications have been published in the Federal Gazette, a deadline will be set for comments. The FOEN will examine the applications as well as the comments and is expected to decide by spring 2019 whether to approve the experiments. The field trials are planned for a maximum of five years until autumn 2023.
FOEN website on experimental releases of GMO
Originalpublikation:
Boni, R. et. al. Pathogen-inducible Ta -Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnol. J. 11 July 2017. DOI: 10.1111/pbi.12765
Sucher, J. et. al. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol. J. 13 October 2016. DOI: 10.1111/pbi.12647
Risk, J.M. et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 28 May 2013. DOI: 10.1111/pbi.12077
Weizen-Resistenzgen schützt auch Mais und Gerste gegen Pilze
Pflanzenforschende der Universität Zürich haben transgene Mais- und Gerstenlinien entwickelt, die dank dem Lr34-Resistenzgen aus Weizen widerstandsfähiger gegen mehrere Pilzkrankheiten sind. Nach den erfolgreichen Versuchen im Gewächshaus wollen die Wissenschaftler die Pflanzen nun im Freiland prüfen: am Agroscope-Standort in Zürich-Reckenholz.
Die Gruppe von Beat Keller, Professor am Institut für Pflanzen- und Mikrobiologie der Universität Zürich (UZH), erforscht seit vielen Jahren das Immunsystem von Getreidesorten, mit dem sich die Pflanzen gegen Schädlinge und Krankheiten zur Wehr setzen. Ziel ist, die vielfältigen Wechselwirkungen von Pflanzen und Pathogenen besser zu verstehen. Gleichzeitig können die widerstandsfähigeren Linien in der Pflanzenzucht genutzt werden, da Pilzkrankheiten häufig zu grossen Ernteverlusten führen.
Freilandversuche in Reckenholz geplant
Hunderte Resistenzgene gegen Pilzkrankheiten von diversen Getreidearten sind bereits bekannt. Eines davon – das von Kellers Team identifizierte Resistenzgen Lr34 aus Weizen – zeichnet sich durch eine langanhaltende, partielle Wirkung gegen mehrere Pilzarten aus. Die UZH-Forschenden wollen wissen, ob das Weizen-Resistenzgen auch bei Mais und Gerste funktioniert. Versuche im Labor und im Gewächshaus haben gezeigt, dass mit Lr34 ausgestattete Mais- und Gerstenlinien besser geschützt sind gegen mehrere Pilzkrankheiten. «Nun wollen wir die Resistenzwirkung unter Feldbedingungen testen. Wir haben daher beim Bundesamt für Umwelt einen Freilandversuch am Agroscope-Standort in Zürich-Reckenholz beantragt», sagt Teresa Koller, Leiterin der geplanten Feldversuche. Deren Durchführung ist vorgesehen von Frühling 2019 bis Herbst 2023.
Mais und Gerste mit verbesserter Pilzresistenz
Nach den erfreulichen Resultaten aus den Gewächshausversuchen soll die Schutzwirkung nun im Freiland getestet werden: beim Lr34-Mais gegen die Blattfleckenkrankheit (E. turcicum) und den Maisbeulenbrand (U. maydis) und bei der Lr34-Gerste gegen den Zwergrost (P. hordei) und den Echten Mehltau (B. graminis f. sp. hordei). «Zudem wollen wir untersuchen, ob die genetischen Veränderungen auch weitere agronomische Eigenschaften der Mais- und Gerstenlinien beeinflussen: die Pflanzenentwicklung und den Ertrag», ergänzt Koller.
Das pflanzliche Immunsystem besser verstehen
Das Resistenzgen Lr34 wird weltweit seit mehr als einem Jahrhundert intensiv in der Zucht und dem Anbau von Weizen genutzt. Trotzdem haben sich die Pilzerreger bisher noch nicht an die Resistenz angepasst – Lr34 ist also nach wie vor wirksam. Viele bekannte Resistenzgene beinhalten den Bauplan für Rezeptoren, mit denen die Pflanzen Krankheitserreger erkennen können. Lr34 hingegen ist von der Struktur her ein sogenannter ABC-Transporter. Dabei handelt es sich um Membranproteine, die Substanzen aktiv in die Pflanzenzelle hinein oder aus dem Zellinneren heraus transportieren.
Pflanzen haben ein ausgeklügeltes Immunsystem entwickelt, das ihnen erlaubt, zwischen krankmachenden und unproblematischen oder nützlichen Mikroben zu unterscheiden und eine angemessene Abwehrreaktion auszulösen. «Primäres Ziel der geplanten Feldversuche ist, die Funktion und Wirksamkeit von Lr34 besser zu verstehen», sagt Teresa Koller, die bereits die Freilandversuche mit transgenem, mehltauresistentem Weizen von 2016 bis 2018 leitete.
Literatur:
Boni, R., Chauhan, H., Hensel, G., Roulin, A., Sucher, J., Kumlehn, J., Brunner, S., Krattinger, S.G. and Keller, B. Pathogen-inducible Ta -Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnol. J. 11 July 2017. DOI: 10.1111/pbi.12765
Sucher, J., Boni, R., Yang, P., Rogowsky, P., Büchner, H., Kastner, C., Kumlehn, J., Krattinger, S.G. and Keller, B. The durable wheat disease resistance gene Lr34 confers common rust and northern corn leaf blight resistance in maize. Plant Biotechnol. J. 13 October 2016. DOI: 10.1111/pbi.12647
Risk, J.M., Selter, L.L., Chauhan, H., et al. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley. Plant Biotechnol. J. 28 May 2013. DOI: 10.1111/pbi.12077
Bewilligungsverfahren
Die Universität Zürich hat im Dezember 2018 beim Bundesamt für Umwelt (BAFU) Gesuche für die Bewilligung der Freisetzungsversuche eingereicht. Nach der Bekanntgabe der Gesuchseingabe im Bundesblatt wird eine Frist für Stellungnahmen eröffnet. Dabei prüft das BAFU die Gesuche und die eingegangenen Stellungnahmen und wird voraussichtlich bis im Frühling 2019 entscheiden, ob es die Versuche bewilligt. Die Feldversuche sind für maximal fünf Jahre bis Herbst 2023 geplant.
Website des BAFU zu GVO-Freisetzungsversuchen
More news from: University of Zurich
Website: http://www.uzh.ch/index.html Published: January 29, 2019 |