How an herbivore hijacks a nutrient uptake strategy of its host plant Wie Maispflanzen sich ihr eigenes Verderben bereiten
Bern, Switzerland
August 17, 2018
The struggle for iron determines the fate of maize and insect pest: Maize plants release secondary metabolites into the soil that bind to iron and thereby facilitate its uptake by the plant. The Western corn rootworm, the economically most important maize pest worldwide, is attracted by these complexes, extracts the bound iron from the maize plant and uses it for its own nutrition. With these insights, researchers from the University of Bern, Switzerland, and the Max Planck Institute for Chemical Ecology in Jena, Germany, provide a new explanation for the extraordinary success of the Western corn rootworm as a global maize pest.
The Western corn rootworm (Diabrotica virgifera) causes annual losses of more than two billion US dollars in corn production, and is thus one of the economically most important pests in agriculture. The insect originates from America, but its occurrence in Europe has increased in recent years. It is resistant to many conventional pest control strategies, and the natural defense mechanisms of maize plants provide little protection against this particular enemy.
Christelle Robert and Matthias Erb from the University of Bern had shown in the past that the corn rootworm is resistant to the most important class of maize defense metabolites, the benzoxazinoids. Robert demonstrated that rootworm larvae are even attracted by benzoxazinoids and can use these substances for their own defense against beneficial nematodes (see press release “Maize pest exploits plant defense compounds to protect itself“, November 27, 2017). However, until now it was unclear which benzoxazinoids attract the rootworm. A combination of genetics, chemistry and behavioral ecology has now enabled the scientists to solve this puzzle: Rootworm larvae recognize specific iron complexes which are formed at the root surface when benzoxazinoids bind to iron. The study was published in the journal Science.
A larva of the Western corn rootwork gnaws at the nutrient-rich corwn root of a maize plant.
Eine Larvae des Maiswurzelbohrers nagt and der nährstoffreichen Kronwurzel einer Maispflanze.
​Bild: Cyril Hertz
Iron uptake: the Achilles heel of maize plants
The roots of young maize plants release benzoxazinoids, which bind to iron and form complexes in the soil. The researchers found that these complexes increase iron availability for maize plants and thus improve plant growth. But, the rootworm uses these exact same iron complexes too: Rootworm larvae use the benzoxazinoid-iron complexes to guide them to the nutrient-rich crown roots of maize plants. At the same time, they ingest the complexes for their own needs. “The corn rootworm has evolved a clever strategy to exploit its host plant’s ability to make iron biologically available. Tragically, this strategy enables the insect to severely damage maize plants and thereby cause massive crop failure”, says Christelle Robert. “This behavior also poses a dilemma for plant breeders: In order to get rid of rootworms, they would have to reduce the release of benzoxazinoids in the roots. However, this would also undermine the plants’ ability to absorb iron. Nevertheless, now that we understand how rootworms orient in the soil, we can start looking for ways to reduce rootworm damage.” The scientist explains that she has been thinking about the possibility of using iron complexes as attractants to divert rootworms from maize roots.
The results of the study highlight the dilemma faced by plants when an herbivore breaks through and evolves tolerance to a defense. “Since benzoxazinoids function both in herbivore defense and nutrient uptake, it is difficult for the plant to immediately stop producing a defense compound that has so many other important functions. The challenge will be to grow maize plants that are better able to defend themselves against the most damaging maize pest in the world without compromising their iron nutrition”, says Jonathan Gershenzon from the Max Planck Institute for Chemical Ecology. Together with Tobias Köllner and his team in Jena he contributed to the breeding of maize lines, which were knocked-out in different steps of benzoxazinoid biosynthesis. These lines were essential for the identification of the benzoxazinoid that - after binding to iron – forms the compound that the rootworm recognizes and uses as a cue for plant selection.
The fact that the Western corn rootworm is able to perceive iron complexes and to adjust its dietary behavior accordingly is also relevant for the understanding of food chains. “Many important trace elements are bound to organic molecules in nature. We therefore expect that other higher organisms also have the ability to perceive biologically available forms of trace elements and to ingest them to improve their nutrient balance,” says Matthias Erb. “The Western corn rootworm is a frustrating yet highly fascinating pest that has just taught us a new trick of nature.”
Original Publication:
L. Hu, P. Mateo, M. Ye, X. Zhang, J. D. Berset, V. Handrick, D. Radisch, V. Grabe, T. G. Köllner, J. Gershenzon, C. A. M. Robert, M. Erb: Plant Iron Acquisition Strategy Exploited by an Insect Herbivore, Science, 16 August 2018, doi:10.1126/science.aat4082 https://doi.org/10.1126/science.aat4082
Wie Maispflanzen sich ihr eigenes Verderben bereiten
Im Kampf um Eisen entscheidet sich das Schicksal von Wirtspflanze und Schädling: Maispflanzen scheiden Stoffe in den Boden aus, die Eisen binden und so das Wachstum der Pflanzen steigern. Der Maiswurzelbohrer, der weltweit schlimmste Maisschädling, wird durch diese Stoffe angelockt, raubt der Pflanze das Eisen und optimiert damit seine eigene Ernährung. Mit dieser Erkenntnis liefern Forschende der Universität Bern und des Max-Planck-Instituts für Chemische Ökologie eine neue Erklärung für den ausserordentlichen Erfolg dieses Schädlings.
Der Maiswurzelbohrer verursacht im Maisanbau jährliche Kosten von über 2 Milliarden US Dollar und ist damit ein ökonomisch wichtiger Schädling in der Landwirtschaft. Der Schädling stammt ursprünglich aus Amerika, wird aber zunehmend in Europa und seit Kurzem auch in der Schweiz beobachtet. Er ist gegen viele gängige Bekämpfungsstrategien immun und lässt sich auch mit natürlichen Resistenzmechanismen von Maispflanzen kaum unter Kontrolle halten.
Christelle Robert und Matthias Erb vom Institut für Pflanzenwissenschaften der Universität Bern hatten in der Vergangenheit gezeigt, dass der Maiswurzelbohrer resistent gegen die wichtigste Klasse von Abwehrstoffen von Maispflanzen ist, den sogenannten Benzoxazinoiden. Die Larven des Maiswurzelbohrers werden von Benzoxazinoiden sogar angelockt und können sie zur Selbstverteidigung gegen Nützlinge verwenden. Welche Moleküle dieser Stoffklasse den Wurzelbohrer aber genau anlocken, war bisher unbekannt. Durch eine Kombination von Genetik, Chemie und Verhaltensökologie konnten die Forschenden das Rätsel nun lösen: Die Larven des Maiswurzelbohrers erkennen spezifische Eisenkomplexe, welche an der Wurzeloberfläche durch die Verbindung von Benzoxazinoiden und Eisen entstehen. Die Studie wurde im Journal Science publiziert.
Die Eisenaufnahme als Achillesferse der Pflanze
Die Wurzeln von jungen Maispflanzen scheiden Benzoxazinoide aus, welche mit Eisen aus dem Boden Komplexe bilden. Die Forschenden fanden heraus, dass diese Komplexe die Eisenverfügbarkeit für die Maispflanzen erhöhen und damit das pflanzliche Wachstum verbessern. Genau diese Komplexe verwendet nun aber auch der Maiswurzelbohrer: Er folgt diesen Stoffen zu den Kronwurzeln von Maispflanzen, welche reich an Nährstoffen sind, und ernährt sich anschliessend von diesen Wurzeln. Gleichzeitig kann der Maiswurzelbohrer mit Hilfe dieser Komplexe und eines eigenen Eisentransport-Enzyms auch seinen Eisenbedarf decken. «Der Maiswurzelbohrer hat damit eine clevere Strategie gefunden, um die Fähigkeit seiner Wirtspflanze, Eisen biologisch verfügbar zu machen, auszunutzen. Das Tragische dabei ist, dass er damit die Maispflanzen empfindlich schädigt und so grosse Ernteausfälle verursacht,» erklärt Christelle Robert.
Dieses Verhalten stellt auch Pflanzenzüchterinnen und -züchter vor ein Dilemma: Um den Maiswurzelbohrer loszuwerden, müssten sie die Ausscheidung von Benzoxazinoiden durch die Wurzeln verringern, aber damit würden sie gleichzeitig die Fähigkeit, der Maispflanzen untergraben, Eisen aufzunehmen. Aber immerhin: «Nun, da wir verstehen, wie sich der Maiswurzelbohrer im Boden orientiert, können wir uns auf die Suche nach Auswegen machen, um seinen Schaden zu verringern. Wir denken etwa darüber nach, ob wir die Eisenkomplexe als Lockstoffe benutzen könnten, um den Wurzelbohrer von den Maispflanzen abzubringen,» so Robert.
Die Forschungsergebnisse verdeutlichen, wie schwierig es für Pflanzen wird, wenn ein Schädling erst einmal ihren Abwehrmechanismus durchbrochen hat. «Benzoxazinoide haben vielfältige Funktionen in der Abwehr von Frassfeinden und zur Verbesserung der Nährstoffaufnahme, daher kann die Pflanze nicht einfach ihre Produktion einstellen. Die Herausforderung wird es sein, mit unserem neuen Wissen Maispflanzen zu züchten, die sich gegen ihren schlimmsten Feind verteidigen können, ohne ihre Eisenversorgung zu gefährden», sagt Jonathan Gershenzon vom Max-Planck-Institut für chemische Ökologie. Zusammen mit Tobias Köllner und seinem Team war er an der Entwicklung der Maislinien beteiligt, in denen die verschiedenen Stufen der Benzoxazinoid-Biosynthese stillgelegt worden waren. So konnten die Benzoxazinoide identifiziert werden, die mit Eisen im Boden den Stoff bilden, der den Schädling zu den Maiswurzeln lockt.
Die Tatsache, dass der Maiswurzelbohrer Eisenkomplexe wahrnehmen und sein Ernährungsverhalten darauf ausrichten kann, ist auch für das Verständnis von Nahrungsketten relevant. «Viele wichtige Spurenelemente sind in der Natur an organische Moleküle gebunden. Wir erwarten deshalb, dass andere höhere Organismen ebenfalls die Fähigkeit besitzen, biologisch verfügbare Formen von Spurenelementen wahrzunehmen und damit gezielt ihren Nährstoffhaushalt aufbessern,» sagt Matthias Erb. «Der Maiswurzelbohrer ist ein frustrierender, aber gleichzeitig hochfaszinierender Schädling, der uns gerade wieder einen neuen Trick der Natur beigebracht hat.»
Originalpublikation:
L. Hu, P. Mateo, M. Ye, X. Zhang, J. D. Berset, V. Handrick, D. Radisch, V. Grabe, T. G. Köllner, J. Gershenzon, C. A. M. Robert, M. Erb: Plant Iron Acquisition Strategy Exploited by an Insect Herbivore, Science, 16. August 2018, doi:10.1126/science.aat4082 https://doi.org/10.1126/science.aat4082