home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

How climate change alters plant growth
Wie der Klimawandel das Pflanzenwachstum verändert


Germany
January 12, 2018

Global warming affects more than just plant biodiversity - it even alters the way plants grow. A team of researchers at Martin Luther University Halle-Wittenberg (MLU) joined forces with the Leibniz Institute for Plant Biochemistry (IPB) to discover which molecular processes are involved in plant growth. In the current edition of the internationally renowned journal "Current Biology", the group presents its latest findings on the mechanism controlling growth at high temperatures. In the future this could help breed plants that are adapted to global warming.

Plants react much more sensitively to fluctuations in temperature than animals. They are also unable to seek out warmer or cooler locations. "When temperatures rise, plants grow taller in order to cool themselves off. Their stalks become taller and their leaves become narrower and grow farther apart. Yet this makes the plant more instable overall," explains Professor Marcel Quint, an agricultural scientist at MLU. This is noticeable, for example, during grain harvesting. Instable plants bend faster in the rain and generally produce less biomass. There is also a reduction in the proportion of key substances, like proteins, that can be stored in the grain kernel.

"While the correlation between temperature and plant growth at the macrolevel is relatively well understood, there are still many open questions at the molecular level. We are just starting to understand how plants detect the changes in temperature and translate this into specific reactions," Quint continues. Earlier studies have shown that the protein PIF4 directly controls plant growth and that this protein is also dependent on temperature. When it’s cold, PIF4 is less active - in other words the plant doesn’t grow. At higher temperatures, PIF4 activates growth-promoting genes and the plant grows taller. "Up until now it had been unclear how the plant knows when to activate PIF4 and how much should be released. There were large gaps in our knowledge about the exact signalling pathway of temperature-controlled growth," says Quint.

And that is precisely what the research group in Halle has now discovered. They investigated the growth behaviour of seedlings of the model plant thale cress (Arabidopsis thaliana). Normally its seedlings form short stems at 20 degrees Celsius (68 ° Fahrenheit). These stems become considerably longer at 28 degrees (82.4 ° F). In the lab, the scientists identified plants with a gene defect which still only formed short stems at 28 degrees. Then they searched for possible reasons for this lack in growth. They discovered a hormone that activates the PIF4 gene at high temperatures, thus producing the protein. This reaction did not occur in the mutated plants. "We have now discovered the role of this special hormone in the signalling pathway and have found a mechanism through which the growth process is positively regulated at higher temperatures," Quint explains. The study is the culmination of a research project that was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) until the end of 2016 and which now will continue to receive funding from the DFG in a follow-up project.

The findings of the research group from Halle may help to breed plants in the future that remain stable even at high temperatures and are able to produce sufficient yields. To achieve this, the findings from the basic research on model plants first have to be transferred to cultivated plants like cereals.

Publication:
Ibanez, Carla et al.: "Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1", Current Biology, DOI: 10.1016/j.cub.2017.11.077     


Wie der Klimawandel das Pflanzenwachstum verändert

Die globale Erderwärmung beeinflusst nicht nur die Artenvielfalt von Pflanzen. Sie verändert sogar das Pflanzenwachstum selbst. Welche molekularen Prozesse dabei ablaufen, hat eine Forschergruppe der Martin-Luther-Universität Halle-Wittenberg (MLU) in Kooperation mit dem Leibniz-Institut für Pflanzenbiochemie (IPB) herausgefunden. In der aktuellen Ausgabe der international renommierten Fachzeitschrift "Current Biology" präsentiert die Gruppe neue Erkenntnisse über den Mechanismus, der das Wachstum bei hohen Temperaturen steuert. Dies könnte dabei helfen, künftig wärmetolerantere Pflanzen zu züchten.

Pflanzen reagieren viel sensibler als Tiere auf Temperaturschwankungen. Zudem können sie sich nicht bewegen, um an einen wärmeren oder kälteren Ort zu gelangen. "Bei steigenden Temperaturen wachsen Pflanzen vor allem in die Länge, um sich abzukühlen: Ihr Spross wird länger, die Blätter werden schmaler und stehen weiter voneinander ab. Dadurch wird die Pflanze jedoch insgesamt instabiler", sagt der Agrarwissenschaftler Prof. Dr. Marcel Quint von der MLU. Das mache sich zum Beispiel auch bei der Ernte von Getreide bemerkbar: Instabilere Pflanzen knicken etwa bei Regen eher ab und produzieren generell weniger Biomasse. Gleichzeitig kann der Anteil an wichtigen Inhaltsstoffen wie Proteinen sinken, die im Getreidekorn eingelagert werden können.

"Während der Zusammenhang zwischen Temperatur und Pflanzenwachstum auf der Makroebene einigermaßen gut verstanden ist, gibt es auf der molekularen Ebene noch viele Fragezeichen. Wir beginnen erst zu verstehen, wie die Pflanze die neue Temperatur erkennt und in konkrete Reaktionen übersetzt", so Quint weiter. So haben frühere Studien gezeigt, dass das Protein PIF4 das Pflanzenwachstum direkt steuert und dass das Protein gleichzeitig temperaturabhängig ist: Ist es kalt, ist PIF4 wenig aktiv - also wächst die Pflanze nicht. Bei höheren Temperaturen aktiviert PIF4 wachstumsfördernde Gene und die Pflanze wächst in die Länge. "Bisher war aber nicht klar, woher die Pflanze weiß, wann sie wieviel PIF4 aktivieren soll. Der genaue Signalweg für ein temperaturgesteuertes Wachstum hatte große Lücken", sagt Quint.

Und genau das hat die hallesche Forschergruppe jetzt herausgefunden. Sie untersuchte dafür das Wachstumsverhalten von Keimlingen der Modellpflanze Ackerschmalwand (Arabidopsis thaliana). Normalerweise bilden ihre Keimlinge bei Temperaturen um 20 Grad Celsius kurze Stengel aus, bei 28 Grad werden die Stengel dagegen deutlich länger. Im Labor identifizierten die Wissenschaftler Pflanzen mit einem Gendefekt, die auch bei 28 Grad Celsius nur kurze Stengel bildeten. Dann suchten sie nach möglichen Ursachen für das ausgebliebene Wachstum. Fündig wurden sie bei einem Hormon, das bei hohen Temperaturen dafür sorgt, dass das PIF4- Gen verstärkt angeschaltet und so das Protein gebildet wird. In den mutierten Pflanzen fehlte diese Reaktion. "Wir haben jetzt die Rolle dieses speziellen Hormons in diesem Signalweg entdeckt und so erstmals einen Mechanismus gefunden, über den der Wachstumsprozess bei Wärme positiv reguliert wird", fasst Quint zusammen. Die Studie stellt den Abschluss eines Forschungsprojekts dar, das bis Ende 2016 von der Deutsche Forschungsgemeinschaft (DFG) gefördert wurde und jetzt in einem Folgeprojekt, ebenfalls durch die DFG gefördert, weitergeführt werden soll.

Die Erkenntnisse der halleschen Arbeitsgruppe können künftig dabei helfen, Pflanzen zu züchten, die auch bei höheren Temperaturen standfest bleiben und ausreichende Erträge liefern können. Dafür müssen aber zunächst die Erkenntnisse aus der Grundlagenforschung an Modellpflanzen auf Kulturpflanzen, wie Getreide, übertragen werden.

Zur Publikation:
Ibanez, Carla et al.: "Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1", Current Biology, DOI: 10.1016/j.cub.2017.11.077 



More solutions from: University Halle-Wittenberg (Martin Luther Universität Halle Wittenberg)


Website: https://www.uni-halle.de/

Published: January 12, 2018


Copyright @ 1992-2025 SeedQuest - All rights reserved