How roots grow - Researchers in Frankfurt observe later root development cell by cell in a high-tech microscope Dem Geheimnis des Wurzelwachstums auf der Spur - Im high-tech Mikroskop beoachten Frankfurter Forscher den Prozess Zelle für Zelle
Frankfurt, Germany
February 4, 2016
In contrast to animals, plants form new organs throughout their entire life, i.e. roots, branches, flowers and fruits. Researchers in Frankfurt wanted to know to what extent plants follow a pre-determined plan in the course of this process. In the renowned journal "Current Biology", they describe the growth of secondary roots of thale cress (Arabidopsis thaliana). They have observed it cell by cell in a high-tech optical microscope and analysed it with computer simulations. Their conclusion: root shape is determined by a combination of genetic predisposition and the self-organization of cells.
"Our work shows the development of the complex organ of the secondary root with unprecedented temporal and spatial resolution", says Professor Ernst H. K. Stelzer of the Buchmann Institute for Molecular Life Sciences at Goethe University Frankfurt am Main. He is the inventor of the high-resolution and gentle light sheet fluorescence microscopy, with which the researchers recorded the development of secondary roots from the first cell division to their emergence out of the main root. For over 64 hours, they first logged the fluorescence signals from cell nuclei and plasma membrane every five minutes and then identified and followed all cells involved in root development.
The secondary roots stem from a variable number of "founder cells", of which some contribute to the development. The shape of the secondary roots and the respective growth curves show great similarities. "We classified the cell divisions on the basis of their spatial orientation in order to find out when new cell lines and cell layers form", explains Daniel von Wangenheim, first author of the study. "Surprisingly, we were not able to predict on the basis of the initial spatial arrangement where exactly the future centre of the secondary root would lie." Evidently, only the first division of the founder cells is strongly regulated, whilst the subsequent divisions do not follow any pre-determined pattern. Their behaviour is rather more adaptive. In nature, this also makes sense, for example if the roots meet with an obstacle.
In order to be able to identify the fundamental principles of secondary root development in the vast amount of data, the researchers combined methods for the quantitative analysis of cell divisions in wild and genetically modified plants (wild type and mutants) with mathematical modelling. This was undertaken by their colleague Prof. Alexis Maizel from the University of Heidelberg. He realized that the development of the secondary root is based on a limited number of rules, which account for the growth and orientation of cells. The development of a characteristic secondary root follows the principles of self-organization, which is prevalent in nature. Alexander Schmitz, co-author of the study, explains the non-deterministic part by the fact that organ development is robust as a result: "In this way, the roots are able to develop in a flexible and nevertheless controlled manner despite the varying arrangement of the cells and mechanical factors in the surrounding tissue."
Publication: Daniel von Wangenheim, Jens Fangerau, Alexander Schmitz, Richard S. Smith, Heike Leitte, Ernst H.K. Stelzer, Alexis Maizel: Rules and self-organizing properties of post-embryonic plant organ cell division patterns, in: Current Biology, 28.1.2016, DOI: doi:10.1016/j.cub.2015.12.047
Dem Geheimnis des Wurzelwachstums auf der Spur - Im high-tech Mikroskop beoachten Frankfurter Forscher den Prozess Zelle für Zelle
Im Gegensatz zu Tieren bilden Pflanzen ihr Leben lang neue Organe: Wurzeln, Äste, Blätter, Blüten und Früchte. Frankfurter Forscher wollten wissen, inwiefern Pflanzen dabei einem festgelegten Bauplan folgen. In der renomierten Fachzeitschrift Current Biology beschreiben sie das Wachstum von Seitenwurzeln der Acker-Schmalwand (Arabidopsis thaliana). Sie haben es Zelle für Zelle in einem High-Tech-Lichtmikroskop beobachtet und mithilfe von Computersimulationen analysiert. Ihr Fazit: die Wurzelform entsteht durch eine Kombination von genetischen Vorgaben und der Selbstorganisation von Zellen.
„Unsere Arbeit zeigt die Entstehung des komplexen Organs der Seitenwurzel in einer bislang noch nicht dagewesenen zeitlichen und räumlichen Auflösung", so Prof. Ernst H. K. Stelzer vom Buchmann Institut für Molekulare Lebenswissenschaften an der Goethe-Universität. Er ist der Erfinder der hochauflösenden und schonenden Lichtscheiben-Fluoreszenzmikroskopie, mit der die Forscher die Entstehung von Seitenwurzeln von der ersten Zellteilung bis zu ihrem Herauswachsen aus der Hauptwurzel erfassten. Über 64 Stunden lang zeichneten sie alle fünf Minuten die Fluoreszenz-Signale aus Zellkernen und der Plasmamembran auf, so dass sie alle an der Entstehung beteiligten Zellen erkennen und verfolgen konnten.
Die Seitenwurzeln entstammen einer variablen Anzahl von „Gründerzellen", von denen manche entscheidend zur Entwicklung beitragen. Die Gestalt der Seitenwurzeln und die dazu gehörigen Wachstumskurven zeigen große Ähnlichkeiten.„Wir haben die Zellteilungen aufgrund ihrer räumlichen Ausrichtung klassifiziert, um herauszufinden, wann neue Zellreihen und Zellschichten entstehen", erklärt Daniel von Wangenheim, der Erstautor der Studie. „Erstaunlicherweise konnten wir anhand der anfänglichen räumlichen Anordnung nicht vorhersagen, wo exakt das zukünftige Zentrum der Seitenwurzel liegen würde." Offenbar ist nur die erste Teilung der Gründerzellen stark reguliert, während die darauffolgenden Zellteilungen keinem festgelegten Muster folgen. Sie verhalten sich eher adaptiv. Das ist in der Natur auch sinnvoll, beispielsweise, wenn die Wurzeln auf ein Hindernis stoßen.
Um in der ungeheuren Vielzahl der Daten grundlegende Prinzipien der Seitenwurzelentwicklung erkennen zu können, kombinierten die Forscher Methoden für die quantitative Analyse von Zellteilungen in wild wachsenden und genetisch veränderten Pflanzen (Wildtyp und Mutanten) mit mathematischer Modellierung, die von Kollegen an der Universität Heidelberg ausgeführt wurden. Dabei erkannten sie: Die Entwicklung der Seitenwurzel beruht auf einer begrenzten Anzahl von Regeln, die Wachstum und Orientierung von Zellen ausmachen. Dass es dennoch zur Entwicklung einer charakteristischen Seitenwurzel kommt, ist dem in der Natur weit verbreiteten Prinzip der Selbstorganisation zu verdanken. Alexander Schmitz, Ko-Autor der Studie, erklärt den nicht-deterministischen Anteil damit, dass die Organentwicklung dadurch robuster wird: „So können die Wurzeln sich trotz unterschiedlicher Anordnung der Zellen und mechanischer Gegebenheiten des umgebenden Gewebes flexibel und dennoch kontrolliert entwickeln."
Publikation: Daniel von Wangenheim, Jens Fangerau, Alexander Schmitz, Richard S. Smith, Heike Leitte, Ernst H.K. Stelzer, Alexis Maizel: Rules and self-organizing properties of post-embryonic plant organ cell division patterns, in: Current Biology, 28.1.2016, DOI: doi:10.1016/j.cub.2015.12.047