Bonn, Germany
November 4, 2015
Researchers at the University of Bonn discover a central relay station in the internal communication of thale cress
Dr. Markus Schwarzländer (rechts) und Dr. Stephan Wagner mit Anzuchtexemplaren der Ackerschmalwand (Arabidopsis thaliana) im Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Universität Bonn. © Foto: Barbara Frommann/Uni Bonn
A team of researchers led by scientists from the University of Bonn has discovered a basis of communication in plant cells: The "MICU" protein controls the calcium ion concentration in the cellular power stations. Using these chemical signatures, the plants regulate, for instance, the formation of organs and react to water stress. The results may be used in the future to optimize agricultural crops. The reputable journal "The Plant Cell" reports on the results in its current issue.
Plants react to stimuli from their environment by specific responses: If available water becomes limiting, they curb evaporation from their leaves. If a pathogen attacks, they arm themselves with chemical weapons. If a soil fungus wishes to collaborate with a plant root for mutual benefit, both partners discuss their duties. "All of these fine adjustments require a great deal of communication between the individual compartments of the plant cell," says Dr. Markus Schwarzlaender, principle investigator of an Emmy Noether group at the Institute of Crop Science and Resource Conservation at the University of Bonn.
Wurzelspitze der Acker-Schmalwand (Arabidopsis thaliana): Das fluoreszierende Sensorprotein gibt in Echtzeit Auskunft über die Kalziumionen in den Mitochondrien. Blau zeigt niedrige, grün mittlere und rot hohe Konzentrationen an. © Foto: Dr. Stephan Wagner
When the various components of plant cells communicate with another, they do not use words but calcium ions, i.e. positively charged calcium atoms, instead. "The information is encoded in the fluctuations of the calcium concentration of the various cell compartments," explains Dr. Schwarzlaender. How can a single ion contain and transduce so much information? This is the question scientists have been asking themselves since it became known how various cell compartments "chat" with each other.
The "MICU" protein is a central relay station
The team of Dr. Schwarzlaender, together with scientists from Italy, France, England, Australia and the Max Planck Institute for Plant Breeding Research in Cologne and the University of Muenster, have now shed light on this question. Investigating the cellular power stations (mitochondria) of thale cress (Arabidopsis thaliana), the scientists discovered that the "MICU" protein fulfills a central role in the control of the calcium ion concentration in the mitochondria.
"In mammals, there is a very similar protein which also regulates the concentration of calcium ions," says Dr. Stephan Wagner from the team working with Dr. Schwarzlaender. Like a turbocharger, it prompts the mitochondria of mammals to provide more energy. The scientists speculated that this could be an interesting candidate, but they were taken by surprise when they found the closely related plant-based "MICU" to be a central relay station in the communication system of Arabidopsis. "The two, similar proteins in animals and plants have evidently arisen from a common ancestor but over the course of millennia, they have developed distinct characteristics," says Dr. Schwarzlaender.
Fluorescing cellular power stations provide information
By destroying the gene with the MICU blueprint in the Arabidopsis genome, the researchers were able to experimentally explore what influence the protein has on the calcium communication of the plant cells. They equipped the mitochondria with a fluorescing sensor protein. Using the variable fluorescence intensities of the sensor, it was possible to visualize changes in the calcium concentrations of the cellular power stations in the living plants. "We were able to identify a clear influence on the communication of the mitochondria," reports Dr. Wagner. Knockout of the MICU gene resulted, among other consequences, in modified properties of cell respiration.
"With our findings, we have established a basis for influencing the calcium signals in specific parts of the plant cell," Dr. Schwarzlaender summarizes. Since Arabidopsis is considered to be an experimental model for plants in general, the findings may be usable in the future for optimizing crops. Looking ahead the researchers note that if, for example, specific plants could be taught to ally themselves with nitrogen-fixing soil bacteria via modified calcium signals, a large amount of fertilizer used in agriculture may be saved.
Publication: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, journal “The Plant Cell“, DOI: 10.1105/tpc.15.00509
Wie Organe von Pflanzenzellen miteinander „chatten“
Forscher der Uni Bonn entdecken zentrale Relaisstation in der internen Kommunikation der Ackerschmalwand
Ein Forscherteam unter Federführung der Universität Bonn hat eine Grundlage der Kommunikation in Pflanzenzellen entschlüsselt: Das Protein „MICU“ steuert an zentraler Stelle in den Zellkraftwerken die Kalziumionen-Konzentration. Mit diesen chemischen Signaturen regeln die Pflanzen zum Beispiel die Ausbildung von Organen und reagieren auf Wasserstress. Die Ergebnisse könnten in Zukunft auch dazu dienen, Nutzpflanzen zu optimieren. Die renommierte Fachzeitschrift „The Plant Cell“ berichtet in ihrer aktuellen Ausgabe über die Resultate.
Pflanzen reagieren in vielfältiger Weise auf Reize ihrer Umwelt: Wird das zur Verfügung stehende Wasser knapp, drosseln sie die Verdunstung aus ihren Blätter. Kommt ein Schädling daher, wappnen sie sich zum Beispiel mit chemischen Keulen. Möchte ein Bodenpilz zum gegenseitigen Vorteil in einer Art Wohngemeinschaft mit einer Pflanzenwurzel leben, dann sprechen beide Partner über ihre Pflichten. „All diese Feinjustierungen erfordern ein großes Maß an Kommunikation zwischen den einzelnen Organen der Pflanzenzellen“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Universität Bonn.
Wenn verschiedene Bestandteile von Pflanzenzellen miteinander kommunizieren, nutzen sie keine Worte, sondern Kalziumionen – also positiv geladene Kalziumatome. „Die Information ist in den Schwankungen der Kalziumkonzentration der unterschiedlichen Zellkompartimente codiert“, erläutert Dr. Schwarzländer. Wie kann ein einzelnes Ion so viele Informationen beinhalten und weiterleiten? Das fragen sich Wissenschaftler, seit bekannt ist, wie verschiedene Zellkompartimente miteinander „chatten“.
Das Protein „MICU“ ist eine zentrale Relaisstation
Einen Lichtstrahl ins Dunkel bringt nun ein Forscherteam um Dr. Schwarzländer, der mit Wissenschaftlern aus Italien, Frankreich, England, Australien sowie dem Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und der Universität Münster neue Erkenntnisse zur Kalziumionen-Kommunikation der Pflanzen gewonnen hat. Anhand der Zellkraftwerke (Mitochondrien) der Ackerschmalwand (Arabidopsis thaliana) entdeckten die Wissenschaftler, dass das Protein „MICU“ eine zentrale Stellung in der Steuerung der Kalziumionen-Konzentration in den Mitochondrien einnimmt.
„Bei Säugetieren gibt es ein ganz ähnliches Protein, das ebenfalls die Menge an Kalziumionen reguliert“, sagt Dr. Stephan Wagner aus dem Team von Dr. Schwarzländer. Es bringt die Mitochondrien der Säuger wie ein Turbolader dazu, mehr Energie bereitzustellen. Die Wissenschaftler spekulierten, dass es sich dabei um einen interessanten Kandidaten handeln könnte, waren dann aber doch überrascht, als sie mit dem eng verwandten pflanzlichen „MICU“ eine zentrale Relaisstation im Kommunikationssystem von Arabidopsis ausfindig machten. „Die beiden sich ähnelnden Proteine in Tieren und Pflanzen sind offenbar aus einem gemeinsamen Vorfahren hervorgegangen, haben aber im Lauf der Jahrmillionen eigene Charakteristika entwickelt“, sagt Dr. Schwarzländer.
Fluoreszierende Zellkraftwerke geben Aufschluss
Indem die Forscher das Gen mit dem MICU-Bauplan im Arabidopsis-Genom zerstörten, konnten sie experimentell herausfinden, welchen Einfluss das Protein auf die Kalzium-Kommunikation der Pflanzen hat. Sie koppelten die Mitochondrien mit einem fluoreszierenden Sensorprotein. Anhand der unterschiedlichen Fluoreszenzintensitäten war es nun möglich, Veränderungen in den Kalzium-Konzentrationen der Zellkraftwerke in der lebenden Pflanze sichtbar zu machen. „Wir konnten eindeutig Einflüsse auf die Kommunikation der Mitochondrien feststellen“, berichtet Dr. Wagner. Das ausgeschaltete MICU-Gen sorgte unter anderem für veränderte Eigenschaften der Zellatmung.
„Mit unseren Erkenntnissen haben wir die Grundlage geschaffen, Einfluss auf die Kalzium-Signale in spezifischen Teilen der Pflanzenzelle zu nehmen“, fasst Dr. Schwarzländer zusammen. Da Arabidopsis als experimentelles Modell für viele Feldfrüchte gilt, lassen sich die Erkenntnisse in Zukunft möglicherweise auch für die Optimierung von Nutzpflanzen anwenden. Wenn man zum Beispiel beliebigen Pflanzen über veränderte Kalzium-Signale beibringen könnte, sich mit stickstofffixierenden Bodenbakterien zu verbünden, ließe sich viel Dünger in der Landwirtschaft einsparen, blicken die Forscher in die Zukunft.
Publikation: The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis, Fachjournal “The Plant Cell“, DOI: 10.1105/tpc.15.00509