home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

How a molecular mechanism affects early flowering - Plant flowering time now predictable
Wie ein molekularer Mechanismus für eine frühe Blüte sorgt - Blütezeit von Pflanzen wird vorhersagbar



Munich, Germany
October 23, 2015


The scientists discovered a molecular mechanism that causes Scottish thale cress to flower two weeks earlier than its counterparts in warmer regions. (Photo: U. Lutz)

Plants adapt their flowering time to the temperature in their surroundings. But what exactly triggers their flowering at the molecular level? Can this factor switch flowering on or off and thus respond to changes in the climate? In a study currently published in PLOS Genetics, a team headed by Professor Claus Schwechheimer from the Technical University of Munich (TUM) describes a molecular mechanism with which plants adapt their flowering time to ambient temperatures and thereby indicate ways in which the flowering time can be predicted on the basis of genetic information.

Plants adapt their flowering time to the temperature in their surroundings. To flower at the optimal time, they take factors like temperature, day length and temperature fluctuations into account. Although the mechanisms that cause flowering before and after winter are largely known by now, relatively little is known about how plants delay their flowering time during a cold spring. Such processes are very important, particularly in regard of global warming with relatively small fluctuations in temperature, as the correct flowering time guarantees optimum arable yields for farmers – and also ensures that the thale cress Arabidopsis thaliana prevails in the everyday evolutionary struggle for survival.


Result of a DNA sequence analysis as it could be used to identify gene variants. The coloured curves represent the four different bases/nucleic acids that form the DNA strand. (Photo: C. Schwechheimer/ TUM)

Crucial gene for early flowerers

In the current edition of the journal PLOS Genetics, the team, headed by Professor Claus Schwechheimer from TU Munich in close cooperation with colleagues from the German Research Center for Environmental Health (Helmholtz Zentrum Neuherberg) and the Max Planck Institute in Tübingen, describe the molecular mechanism with which the thale cress Arabidopsis thaliana adapts its flowering time to the ambient temperature. Interestingly, the first indication of the existence of this natural gene variation came from the cool latitudes of Scotland. This led the scientists to discover a molecular mechanism that causes Scottish thale cress to flower two weeks earlier than its counterparts in warmer regions. Due to the insertion of a so-called jumping gene (transposon), the formation of the crucial flowering gene was so minimal that the function of the flowering repressor no longer had any effect.

And that’s not all: Ulrich Lutz, first author of the study, was also able to show that this gene mutation has already become established in several other variants of the thale cress and controls flowering behavior in them. The researchers were even able to trace their steps here and predict the flowering behavior of the thale cress based on the presence of the jumping gene (transposon) with a high degree of accuracy. Already in the near future, it should be possible to transfer this knowledge to the flowering behavior of crop plants like rapeseed.

Research helps estimate the ecological consequences of climate change

“Our research will help to enable the estimation of the ecological consequences of climate change,” says Professor Schwechheimer. “Climate change will bring about a change in the flowering behavior of many plants. We researchers must gain a better understanding of the impacts of this temperature change on the world of plants and the organisms that depend on them.”

Plants react to the experience of a long cold winter and to extended cold periods in spring by delaying their flowering time. The molecular mechanisms with which plants perceive these cold periods differ, however. In the case of winter cereals, like winter wheat, the seed can germinate in autumn but the plant does not flower, as it needs the experience of winter to act as a wake-up call indicating that the correct time for flowering has come.

Findings can help food production

The genes that regulate this process are already known in many plants. In spring wheat, for example, they have been modified by conventional breeding that the plant flowers even if it is planted in spring. The temperatures in a cool or warm spring also affect flowering behavior; however, very little is known about this. Given that small changes of just a few degrees Celsius can have a negative impact on agricultural production, it is important to understand these processes.

The findings of the research team from the TUM Chair of Plant Systems Biology could help with the prediction and even modification of plant flowering time in the future. Such insights are also important for plant breeding to ensure that food production can be guaranteed in the long term in the context of progressive global warming.

Publication:
Ulrich Lutz, David Posé, Matthias Pfeifer, Heidrun Gundlach, Jörg Hagmann, Congmao Wang, Detlef Weigel, Klaus F. X. Mayer, Markus Schmid, Claus Schwechheimer: Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M, PLOS Genetics October 22, 2015. DOI:10.1371/journal.pgen.1005588 


Wie ein molekularer Mechanismus für eine frühe Blüte sorgt - Blütezeit von Pflanzen wird vorhersagbar

Pflanzen passen ihre Blütezeit der Temperatur ihrer Umgebung an. Doch was genau löst ihre Blüte auf molekularer Ebene aus? Kann dieser Faktor das Blühen an- oder ausknipsen und damit auf ein verändertes Klima reagieren? In PLOS Genetics beschreibt ein Team um Professor Claus Schwechheimer von der TU München (TUM) einen molekularen Mechanismus, mit dem Pflanzen ihre Blütezeit an geänderte Temperaturen anpassen. Die Wissenschaftler zeigen damit Wege auf, den Blühzeitpunkt aufgrund genetischer Informationen vorherzusagen.

Um zum optimalen Zeitpunkt zu blühen, sind für Pflanzen Faktoren wie Temperatur, Tageslänge und Temperaturschwankungen entscheidend. Während die Mechanismen, welche vor und nach dem Winter zur Blüte führen, inzwischen weitgehend geklärt sind, ist noch relativ wenig darüber bekannt, wie Pflanzen ihre Blütezeit während eines kalten Frühlings nach hinten verschieben. Gerade mit Blick auf die globale Erderwärmung mit relativ kleinen Temperaturschwankungen spielen aber solche Prozesse eine große Rolle. Denn vom richtigen Blühzeitpunkt hängt auch der Ertrag auf dem Acker ab – und der Ackerschmalwand Arabidopsis thaliana sichert er das Überleben im täglichen Überlebenskampf der Evolution.

Entscheidendes Gen für Frühblüher

In der aktuellen Ausgabe der Zeitschrift PLOS Genetics beschreibt das Team um Professor Claus Schwechheimer von der TUM in enger Zusammenarbeit mit Kollegen vom Helmholtz-Zentrum Neuherberg und dem Max-Planck-Institut in Tübingen den molekularen Mechanismus, mit dem die Ackerschmalwand Arabidopsis thaliana ihren Blühzeitpunkt an die Umgebungstemperatur anpasst. Interessanterweise kam der erste Hinweis für die Existenz dieser natürlichen Genvariation aus dem kühlen Schottland, weil dort die Ackerschmalwand trotz kühler Temperaturen früher blüht. So fanden die Wissenschaftler einen molekularen Mechanismus, der bei der schottischen Ackerschmalwand eine um zwei Wochen frühere Blüte auslöst als bei ihren Verwandten aus wärmeren Gegenden. Durch die Insertion eines sogenannten springenden Gens (Transposon) war die Bildung des entscheidenden Gens so gering, dass die Funktion dieses Blühverhinderers (Repressors) nicht mehr zum Tragen kam.

Und nicht nur das: Daneben konnte Ulrich Lutz, Erstautor der Studie, aufzeigen, dass diese Genveränderung sich bereits in mehreren anderen Varianten der Ackerschmalwand weltweit durchgesetzt hat und dort das Blühverhalten kontrolliert. Hier konnte der Weg sogar in umgekehrter Richtung beschritten werden und die Forscher hatten die Möglichkeit das Blühverhalten der Ackerschmalwand aufgrund des Vorhandenseins des springenden Gens mit hoher Präzision vorherzusagen. Dieses Wissen auf das Blühverhalten von Nutzpflanzen wie den Raps zu übertragen, sollte in naher Zukunft möglich sein.

Forschung hilft, ökologische Folgen des Klimawandels abzuschätzen

„Mit unserer Forschung liefern wir einen Beitrag dazu, die ökologischen Folgen der Klimawandels abschätzen zu können“, sagt Schwechheimer – „denn die Erderwärmung wird bei vielen Pflanzen ein verändertes Blüteverhalten mit sich bringen. Die Auswirkungen dieser Temperaturveränderung auf die Pflanzenwelt, aber auch auf die von ihnen abhängigen Lebewesen, müssen wir Forscher besser verstehen.“

Pflanzen reagieren auf die Erfahrung eines langen kalten Winters und auf längere Kälteperioden im Frühjahr durch eine Verzögerung des Blütezeitpunkts. Die molekularen Mechanismen, mit denen die Pflanzen diese Kälteperioden wahrnehmen, sind jedoch unterschiedlich. Bei Wintergetreiden wie dem Winterweizen kann der Samen im Herbst auskeimen, die Pflanze kommt aber nicht zur Blüte, denn sie bedarf erst der Erfahrung des Winters als Weckruf, dass der richtige Zeitpunkt fürs Blühen gekommen ist.

Erkenntnisse für Lebensmittelproduktion wichtig

Die Gene für diese Regulation sind bereits in vielen Pflanzen bekannt. Im Sommerweizen etwa sind sie durch herkömmliche Züchtung so verändert, dass die Pflanze selbst dann blüht, wenn sie erst im Frühjahr ausgesät wird. Auch die Temperaturen in einem kühlen oder warmen Frühling beeinträchtigen das Blühverhalten, doch sind die Kenntnisse darüber noch sehr eingeschränkt. Da sich schon kleine Veränderungen von wenigen Grad Celsius negativ auf die landwirtschaftliche Produktion auswirken können, ist es wichtig diese Prozesse zu verstehen.

Die Ergebnisse des Teams vom TUM-Lehrstuhl für Systembiologie der Pflanzen können künftig dabei helfen, die Blütezeit vorherzusagen oder sogar zu modifizieren. Ebenso für die Pflanzenzüchtung sind solche Erkenntnisse bei fortschreitender globaler Erwärmung wichtig, um die Produktion von Lebensmitteln dauerhaft zu sichern.

Publikation:
Ulrich Lutz, David Posé, Matthias Pfeifer, Heidrun Gundlach, Jörg Hagmann, Congmao Wang, Detlef Weigel, Klaus F. X. Mayer, Markus Schmid, Claus Schwechheimer: Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M, PLOS Genetics October 22, 2015. DOI:10.1371/journal.pgen.1005588 


 



More solutions from: Technische Universität München


Website: http://www.tum.de

Published: October 25, 2015


Copyright @ 1992-2025 SeedQuest - All rights reserved