home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

Toxic substances in banana plants kill root pests
Gift in Bananenwurzeln tötet Schädlinge


Germany
December 11, 2013

Banana plants protect themselves from parasitic nematodes by increasing local concentrations of defensive substances in infected root tissues.

Bananas are a major food staple for about 400 million people in the tropical and subtropical regions of Asia, Africa and Latin America. However, banana yields worldwide are severely threatened by pests. Dirk Hölscher from the Max Planck Institute for Chemical Ecology in Jena, Germany, and an international team of researchers have discovered that some banana varieties accumulate specific plant toxins in the immediate vicinity of root tissue that has been attacked by the parasitic nematode Radopholus similis. This local accumulation is crucial for the plant’s resistance to this pest organism. The toxin is stored in lipid droplets in the body of the nematode and the parasite finally dies. These findings provide important clues for the development of pest-resistant banana varieties. (Proceedings of the National Academy of Sciences USA, December 9; 2013, DOI 10.1073/pnas.1314168110)


Root of the susceptible banana variety Grande Naine (above) and the resistant banana Yangambi km5 (below): visible are the few red, phenylphenalenone containing regions on the resistant Yangambi km5 root within the predominantly healthy, pale root tissue. The root of the susceptible Grande Naine banana is covered in widespread dark, red-brown areas. This massive root damage in the Grande Naine banana will eventually cause the plant’s death. Photo: Dirk Hölscher, MPI Chem. Ecol.

Banana yields worldwide threatened by pests

Bananas are among the world’s most important food crops. Dessert bananas are produced primarily for homegrown consumption in China and India and for export to the northern hemisphere in Latin America. In Europe, they represent the most popular tropical fruit. Plantains (a type of cooking banana) are important components of daily meals in Africa and Southeast Asia. They are highly prized because of their high contents of nutrients, such as potassium, magnesium and vitamins B and C.

Apart from fungi and insects, the parasitic nematode Radopholus similis is considered a major banana pest. It attacks the roots of banana plants, causing slower growth and development of the plant and fruit. In the final stage of the disease plants topple over − often when already bearing an immature fruit bunch. Yield losses up to 75% can be the result of R. similis infestation. In order to control such pests in banana plantations, high doses of synthetic pesticides are used which not only cause ecological damage, but can also have severe negative effects on the health of people who are exposed to these chemicals.

Scientists at the Max Planck Institute for Chemical Ecology and their colleagues from universities in Leuven (Belgium), Jena, Kassel-Witzenhausen, Halle, Bonn and Bremen, as well as the Leibniz Institute for Natural Product Research and Infection Biology and the Leibniz Institute of Photonic Technology in Jena have now taken a closer look at the plant-nematode interactions in the context of resistance versus susceptibility. They compared two banana varieties, a resistant and a susceptible one, and studied their defense responses to Radopholus similis.

Phenylphenalenones: Local accumulation of defensive substances in infected regions of root tissues inhibits further propagation of the pest

The researchers used modern spectroscopic analysis and imaging techniques and were able to identify and localize defense substances in banana roots: The plants accumulated so-called phenylphenalenones only in infected regions of their roots, but not in healthy tissues. This was the case in both the resistant and the susceptible banana variety. The concentration of the most active compound anigorufone, however, was much higher in the immediate vicinity of lesions on the roots of resistant bananas in comparison to infected root tissues of the nematode susceptible banana plants. “The production of the toxin alone is not responsible for the banana plant’s resistance to nematodes. It is the differential concentration in specific regions of the roots, which is particularly high at the precise location of the nematode attack, which makes the difference and confers resistance. We measured far higher concentrations of the toxin in these localized regions in the resistant banana variety,” Dirk Hölscher summarizes the results.

Lipid droplets containing the active compounds visible in the nematode

The toxic effect of anigorufone and other substances was tested on living nematodes. It turned out that it was in fact anigorufone which was most toxic to the pest organism. By using imaging techniques, the researchers were able to visualize the plant toxin within the body of the roundworm. There the lipid-soluble anigorufone accumulated in lipid droplets which increased in size as they converged and finally killed the nematode. Why these complex lipid droplets are formed and why the nematodes cannot metabolize or excrete the toxin still needs to be clarified. However, it is likely that the growing lipid droplets displace the inner organs of the nematode causing an eventual metabolic dysfunction.

The scientists will now try to find out how resistant banana plants biosynthesize and translocate the defense compounds on a molecular level. Such insights will provide important clues for the development of banana varieties which are resistant to the nematodes. This could help to minimize the excessive use of highly toxic pesticides in banana plantations which jeopardize the environment and people’s lives. [AO]


Original Publication:
Hölscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker, M., Bretschneider, T., Bürkert, A., Crecelius, A. C., De Waele, D., Elsen, A., Heckel, D. G., Heklau, H., Hertweck, C., Kai, M., Knop, K., Krafft, C., Madulla, R. K., Matthäus, C., Popp, J., Schneider, B., Schubert, U., Sikora, R., Svatoš, A., Swennen, R. (2013).
Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis.
Proceedings of the National Academy of Sciences of the United States of America. DOI 10.1073/pnas.1314168110
http://dx.doi.org/10.1073/pnas.1314168110


Gift in Bananenwurzeln tötet Schädlinge

Die gezielte Anreicherung von Abwehrstoffen im Wurzelgewebe schützt Bananenpflanzen vor parasitischen Fadenwürmern.

Für etwa 400 Millionen Menschen in den Ländern der tropischen und subtropischen Regionen Asiens, Afrikas und Lateinamerikas zählen Bananen zu den Grundnahrungsmitteln. Die weltweite Bananenernte ist jedoch durch Schädlinge stark gefährdet. Ein internationales Forscherteam um Dirk Hölscher vom Max-Planck-Institut für chemische Ökologie in Jena hat entdeckt, dass manche Bananenpflanzen Abwehrstoffe gegen den Fadenwurm Radopholus similis zielgenau in den befallenen Wurzelbereichen anreichern können. Diese Fähigkeit entscheidet darüber, ob eine Bananensorte widerstandsfähig gegen den Bananenschädling ist. Im Körper der Parasiten bilden sich Fetttröpfchen, die den Abwehrstoff speichern und zum Tod der Nematoden führen. Die Erkenntnisse können dazu beitragen, schädlingsresistente Bananensorten zu entwickeln. (Proceedings of the National Academy of Sciences USA, 9. Dezember 2013, DOI 10.1073/pnas.1314168110)

Schädlinge bedrohen die weltweite Bananenernte

Bananen gehören weltweit zu den wichtigsten Nahrungspflanzen. Es handelt sich dabei nicht nur um Dessertbananen. Diese werden vor allem in China und Indien für den Eigenbedarf produziert, während aus Lateinamerika in großen Mengen in unsere Breiten importierte Bananen nach Äpfeln das beliebteste Obst darstellen. In Afrika und Südostasien auf dem Speiseplan stehende Kochbananen haben ebenfalls eine große Bedeutung. Wegen ihres hohen Gehalts an Nährstoffen wie Kalium, Magnesium, sowie Vitamin B und C wird die Kochbanane auch als die „Kartoffel der Tropen“ bezeichnet.

Neben Pilzen und Insekten gilt der Nematode Radopholus similis als einer der Hauptschädlinge von Bananen. Der wenige Millimeter lange Wurm befällt die Wurzeln der Bananenpflanzen, verursacht Kümmerwuchs und im Endstadium der Krankheit ein Umfallen der Bananenpflanze − oftmals dann, wenn die Früchte noch nicht erntereif sind. Ernteverluste von bis zu 75 Prozent können die Folge sein. Um den Schädlingsbefall einzudämmen, werden im Bananenanbau hohe Dosen von chemisch-synthetischen Pflanzenschutzmitteln eingesetzt, die nicht nur massive ökologische Schäden verursachen, sondern mit hohen gesundheitlichen Risiken für die Menschen, die mit den Chemikalien in Berührung kommen, verbunden sind.

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie haben zusammen mit Kollegen der Universitäten Löwen (Belgien), Jena, Kassel-Witzenhausen, Halle, Bonn und Bremen, sowie des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie und des Leibniz-Instituts für Photonische Technologien in Jena die Wirkungszusammenhänge der Anfälligkeit bzw. Resistenz gegen diesen bedeutenden Bananenschädling genauer unter die Lupe genommen. Dazu untersuchten sie die Wechselwirkungen von Radopholus similis mit einer für diesen Schädling anfälligen und einer resistenten Bananensorte.

Phenylphenalenone: Lokaltherapie schützt Bananenwurzel vor Ausbreitung des Nematodenbefalls

Mithilfe modernster spektroskopischer Analysemethoden und bildgebender Verfahren konnten die Forscher nachweisen, dass die Abwehrstoffe der Banane, sogenannte Phenylphenalenone, nur in den von Nematoden infizierten Regionen der Wurzeln angereichert werden, nicht jedoch im gesunden Gewebe. Dies traf allerdings sowohl für die resistente Sorte, als auch für die anfällige Sorte zu. Der Gehalt des Wirkstoffs Anigorufon war jedoch im Befallsbereich der resistenten Bananenpflanze deutlich höher als im Wurzelgewebe der anfälligen Banane, das ebenfalls von dem Schädling infiziert worden war. „Die Produktion des Abwehrstoffs allein macht die Banane noch nicht resistent. Vielmehr ist die gezielte Anreicherung in ganz bestimmten Regionen, nämlich genau dort, wo die Nematoden die Wurzel beschädigen, entscheidend. In diesen eingegrenzten Bereichen haben wir bei der resistenten Sorte weit höhere Werte gemessen“, fasst Dirk Hölscher die Ergebnisse zusammen.

Fetttröpfchen mit gespeichertem Wirkstoff in Nematoden nachweisbar

Die toxische Wirkung von Anigorufon und anderen Substanzen wurde anschließend an lebenden Nematoden getestet. Es stellte sich heraus, dass Anigorufon den Schädling tatsächlich am wirksamsten abtötete. Die Forscher konnten das Pflanzengift im Körper des Fadenwurms sichtbar machen. Dort bildeten sich Fetttröpfchen, die das fettlösliche Anigorufon speicherten und sich durch Zusammenfließen weiter vergrößerten bis dies den Tod des Wurms verursachte. Warum es zur Bildung dieser komplexen Lipidtropfen kommt und warum die Nematoden das Gift nicht abbauen oder ausscheiden können, bleibt noch zu klären. Wahrscheinlich verdrängen die immer größer werdenden Tropfen die inneren Organe des Fadenwurms und bringen seinen Stoffwechsel schließlich zum Erliegen.

Die Wissenschaftler möchten jetzt herausfinden, wie die Biosynthese und der Transport der Abwehrstoffe in der resistenten Banane auf molekularer Ebene funktionieren und gesteuert werden. Die Erkenntnisse könnten zur Entwicklung von resistenten Bananensorten beitragen. Damit könnte der exzessive Einsatz von hochgiftigen Pflanzenschutzmitteln bei der Bananenproduktion eingedämmt werden, der nicht nur die Umwelt, sondern auch das Leben von Menschen gefährdet. [AO]

Originalveröffentlichung:
Hölscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker, M., Bretschneider, T., Bürkert, A., Crecelius, A. C., De Waele, D., Elsen, A., Heckel, D. G., Heklau, H., Hertweck, C., Kai, M., Knop, K., Krafft, C., Madulla, R. K., Matthäus, C., Popp, J., Schneider, B., Schubert, U., Sikora, R., Svatoš, A., Swennen, R. (2013). Phenalenone-type phytoalexins mediate resistance of banana plants (Musa spp.) to the burrowing nematode Radopholus similis. Proceedings of the National Academy of Sciences of the United States of America. DOI 10.1073/pnas.1314168110
http://dx.doi.org/10.1073/pnas.1314168110

 



More solutions from: Max Planck Institute for Chemical Ecology


Website: http://www.ice.mpg.de/ext/home0.html

Published: December 11, 2013

 

 

 

 

 

 

 

 

 


Copyright @ 1992-2025 SeedQuest - All rights reserved