home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

Maize genes control little helpers in the soil - An international team of researchers discovers how microbes boost root growth
Maisgene kontrollieren winzige Helfer im Boden - Internationales Forschungsteam findet heraus, wie Mikroben das Wurzelwachstum ankurbeln


Bonn, Germany
March 25, 2024


Inspecting the root system of a maize seedling:Inspecting the root system of a maize seedling: - Prof. Dr. Frank Hochholdinger (left) and Dr. Peng Yu (right) from the Chair of Crop Functional Genomics at the University of Bonn.© Photo: Volker Lannert/University of Bonn

 

Tiny organisms such as bacteria and fungi help to promote the health and function of plant roots. It is commonly assumed that the composition of these microbes is dependent on the properties of the soil. However, an international team of researchers led by the University of Bonn has now discovered when studying different local varieties of maize that the genetic makeup of the plants also helps to influence which microorganisms cluster around the roots. The results, which have now been published in the prestigious journal Nature Plants, could help to breed future varieties of maize that are better suited to drought and limited nutrients.
 

 

In order to grow properly, plants take in water and nutrients through their roots. But they have the assistance of some tiny helpers: A layer of bacteria and fungi, just a few millimeters thick, can be found directly around the roots. “These microorganisms are essential for the health and fitness of the plants,” says Dr. Peng Yu, head of the junior research group “Root Functional Biology” at the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn. The microbes help with the absorption of water and nutrients and protect the plants against harmful organisms – similar to how the “microbiome” in the intestines of humans helps to determine whether we become ill or stay healthy.

The traditional view is that the composition of the microbiome – the totality of all microorganisms – is mainly determined by the properties of the soil. This includes things such as the type of soil and whether it is more acidic or alkaline. However, an international team of researchers led by the University of Bonn has now demonstrated in maize plants that the genetic makeup of the host plants has a significant influence on the composition of the root microbes.

“Our study also showed that the microbiome around the roots has a crucial influence on how resilient the maize plants are when faced with stressful conditions such as a nutrient deficits or lack of water,” says Prof. Dr. Frank Hochholdinger from the Crop Functional Genomics department in INRES at the University of Bonn. In view of global climate change and the limited supply of the nutrient phosphorous, resilience of these plants to drought and a lack of nutrients could play an even greater role in the future.

Adapting regional varieties of maize to environmental conditions

The various varieties of maize have very different genetic composition. Regional varieties have adapted themselves to very different environmental conditions depending on whether they are cultivated, for example, in cooler highland or the warmer lowland areas of South America. “The fact that farmers have continued to select those varieties of maize suited to the local climate over many centuries has led to very different genotypes that we were able to utilize for our study,” says Dr. Yu, who is head of an Emmy Noether junior research group funded by the German Research Foundation and also a member of the PhenoRob Cluster of Excellence and the transdisciplinary research area “Sustainable Futures” at the University of Bonn.

In cooperation with scientists from Southwest University in Chongqing (China), the researchers studied a total of 129 different varieties of maize. Some of these were cultivated under “normal” conditions while others experienced deficiencies in phosphorus, nitrogen, or water. Additionally, the team sequenced the DNA of the microbes from 3168 samples taken from the layer found directly around the roots that is just a few millimeters thick.

The role played by the genetic makeup of the roots became apparent in those plants grown under stressful conditions. Interestingly, the lack of nutrients and water had a significant influence on the composition of the microbes. Furthermore, the team discovered important characteristic differences in the microbiome between different varieties of maize under the same stressful conditions. “We were able to prove that certain maize genes are able to interact with certain bacteria,” says Dr. Yu to explain on the most important results. Using data on the growth conditions at the place of origin of a certain variety of maize and on its genetic composition, the researchers were even able to predict which key organisms would be found in the microbiome around the roots.

The bacterium Massilia promotes the growth of lateral roots

The results for bacteria of the genus Massilia especially stood out: “It was very noticeable that very few specimens of this microbe were found when there was a sufficient supply of nitrogen,” says Prof. Dr. Gabriel Schaaf from the Ecophysiology of Plant Nutrition department at INRES and member of the PhenoRob Cluster of Excellence. If there was a lack of nitrogen, however, lots of Massilia could be found clustering around the roots. The team then inoculated maize roots with this bacterium. The plants grew a lot more lateral roots as a result and were therefore able to significantly improve their uptake of nutrients and water.

But how do maize plants manage to harness the tiny Massilia bacterium for this type of root growth? Following further studies, the researchers discovered that the roots actually attracted the Massilia bacteria using flavones. This substance is one of many secondary metabolites in the plant and stimulates the growth of lateral roots with the aid of the bacteria. “However, this was dependent on whether the maize plant had a microtubule-binding gene,” says Dr. Peng Yu. If this gene was missing, the plant did not produce more lateral roots.

The varieties of maize with the missing gene come from a huge database of maize mutations that has been set up by the researchers headed by Dr. Caroline Marcon at INRES. This database helps researchers explain the functions of maize genes.

Maize varieties better adapted to drought and a lack of nutrients

The international team of researchers hopes that they will also be able to predict yield in the medium term. “We are carrying out basic research,” says Hochholdinger. “However, these results could act as the basis for cultivation of maize varieties better suited to drought and a lack of phosphorous by using genome and microbiome data.”
 

SPONSORSHIP

Alongside various departments in the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn, the following institutions also participated in the research: Southwest University Chongqing (China), Leibniz Institute of Plant Genetics and Crop Plant Research, Pennsylvania State University (USA), Institute of Natural Resources and Agrobiology of Seville (Spain), University of Hohenheim, University of Nebraska-Lincoln (USA), Julius Kühn Institute in Braunschweig, Ghent University (Belgium), Center for Plant Systems Biology in Ghent, University of Amsterdam (Netherlands) and the Department of Food Microbiology at the University of Bonn. The study was funded by, amongst others, the German Research Foundation (DFG), including funds from the PhenoRob Cluster of Excellence.

PUBLICATION

Xiaoming He, Danning Wang, Yong Jiang, Meng Li, Manuel Delgado-Baquerizo, Chloee McLaughlin, Caroline Marcon, Li Guo, Marcel Baer, Yudelsy A.T. Moya, Nicolaus von Wirén, Marion Deichmann, Gabriel Schaaf, Hans-Peter Piepho, Zhikai Yang, Jinliang Yang, Bunlong Yim, Kornelia Smalla, Sofie Goormachtig, Franciska T. de Vries, Hubert Hüging, Mareike Baer, Ruairidh J. H. Sawers, Jochen C. Reif, Frank Hochholdinger, Xinping Chen, Peng Yu: Heritable microbiome variation is correlated with source environment in locally adapted maize varieties, Nature Plants, DOI: 10.1038/s41477-024-01654-7; Internet: https://www.nature.com/articles/s41477-024-01654-7


 

 

Maisgene kontrollieren winzige Helfer im Boden

Internationales Forschungsteam findet heraus, wie Mikroben das Wurzelwachstum ankurbeln

Winzlinge wie Bakterien und Pilze helfen Pflanzenwurzeln bei ihrer Arbeit und fördern ihre Gesundheit. Eine gängige Vorstellung ist, dass die Zusammensetzung dieser Mikroben von den Bodeneigenschaften abhängt. Jedoch hat nun ein internationales Forschungsteam unter Federführung der Universität Bonn an verschiedenen lokalen Maissorten herausgefunden, dass die Erbanlagen der Pflanze ebenfalls dazu beitragen, welche Mikroorganismen sich an der Wurzel tummeln. Die Ergebnisse, die nun in der renommierten Fachzeitschrift Nature Plants veröffentlicht sind, könnten künftig dabei helfen, besser an Dürre und Nährstoffmangel angepasste Maissorten zu züchten.

Damit Pflanzen ordentlich wachsen können, nehmen sie über ihre Wurzeln Wasser und Nährstoffe auf. Dabei greifen sie auf winzige Helfer zurück: Vor allem Bakterien und Pilze befinden sich in einer wenige Millimeter dünnen Schicht um die Wurzeln herum. „Diese Mikroorganismen sind für die Gesundheit und Fitness der Pflanze essentiell“, sagt Dr. Peng Yu, der die Nachwuchsgruppe „Funktionelle Wurzelbiologie“ am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn leitet. Die Mikroben helfen bei der Wasser- und Nährstoffaufnahme und wehren für die Pflanze schädliche Organismen ab – ähnlich wie das „Mikrobiom“ im Darm des Menschen mit darüber bestimmt, ob wir krank werden oder gesund bleiben.

Eine klassische Vorstellung ist, dass vor allem Eigenschaften des Bodens über die Zusammensetzung des Mikrobioms – der Gesamtheit aller Mikroorganismen – bestimmen. Hierzu zählen etwa die Bodenart und ob der Boden eher sauer oder basisch ist. Ein internationales Forschungsteam unter Federführung der Universität Bonn hat jedoch nun an Maispflanzen nachgewiesen, dass das Erbgut der Wirtspflanze einen erheblichen Einfluss auf die Zusammensetzung der Wurzelmikroben hat.

„Dabei hat sich gezeigt, dass das Mikrobiom an der Wurzel ganz entscheidend dafür ist, wie widerstandsfähig die Maispflanzen gerade unter Stressbedingungen wie Nährstoff- oder Wassermangel sind“, sagt Prof. Dr. Frank Hochholdinger von der Abteilung für funktionelle Genomik der Nutzpflanzen am INRES der Universität Bonn. Mit Blick auf den globalen Klimawandel und begrenzte Ressourcen des Nährelements Phosphor könnte die Resilienz gegen Dürre und Nährstoffmangel in Zukunft noch eine viel größere Rolle spielen.

Anpassung regionaler Maissorten an Umweltbedingungen

Das Erbgut verschiedener Maissorten ist sehr unterschiedlich. So sind regionale Sorten an ganz verschiedene Umweltbedingungen angepasst, je nachdem ob sie etwa im kühleren Hochland oder wärmeren Tiefland Südamerikas angebaut werden. „Die Jahrhunderte lange Selektion von an das lokale Klima angepassten Maissorten führt zu sehr unterschiedlichen Genotypen, die wir für die Studie nutzen konnten“, sagt Dr. Yu, der eine von der Deutschen Forschungsgemeinschaft geförderte Emmy Noether-Nachwuchsgruppe leitet und auch Mitglied im Exzellenzcluster PhenoRob und dem Transdisziplinären Forschungsbereich „Sustainable Futures“ an der Universität Bonn ist.

Die Forschenden haben zusammen mit Wissenschaftlern der Southwest University in Chongqing (China) insgesamt 129 verschiedene Maissorten untersucht, die einerseits unter „normalen“ Bedingungen und andererseits unter Phosphor-, Stickstoff- und Wassermangel angezogen wurden. Außerdem sequenzierte das Team die DNA von Mikroben aus 3168 Proben, die aus der wenige Millimeter dicken Schicht um die Wurzeln herum stammen.

Die Rolle der Erbanlagen in der Wurzel stellte sich unter Stressbedingungen heraus. Nährstoff- und Wassermangel hatten zwar einen erheblichen Einfluss auf die Zusammensetzung der Mikroben. Doch unter gleichen Stressbedingungen zeigten sich trotzdem charakteristische Mikrobiom-Unterschiede zwischen den verschiedenen Maissorten. „Wir haben nachgewiesen, dass bestimmte Maisgene mit bestimmten Bakterien interagieren“, nennt Dr. Yu ein wichtiges Ergebnis. Die Forschenden konnten anhand von Daten zu den Wuchsbedingungen am Herkunftsort einer bestimmten Maissorte und deren Erbanlagen sogar vorhersagen, welche Schlüsselorganismen im Mikrobiom an der Wurzel vorkommen.

Das Bakterium Massilia fördert die Ausbildung von Seitenwurzeln

Dabei stachen Bakterien der Gattung Massilia besonders hervor: „Auffällig war, dass bei ausreichender Stickstoffversorgung nur wenige Exemplare dieser Mikroben vorkamen“, sagt Prof. Dr. Gabriel Schaaf von der Abteilung Ökophysiologie der Pflanzenernährung am INRES und Mitglied im Exzellenzcluster PhenoRob der Universität Bonn. War dagegen der Stickstoff knapp, tummelten sich viele Massilia an der Wurzel. Das Team „impfte“ daraufhin Maiswurzeln mit diesem Bakterium. Dabei zeigte sich, dass die Pflanzen in der Folge viel mehr Seitenwurzeln bildeten und dadurch ihre Nährstoff- und Wasseraufnahme deutlich verbesserten.

Wie schaffen es die Maispflanzen, das winzige Massilia-Bakterium für ein derartiges Wurzelwachstum einzuspannen? Mit weiteren Untersuchungen fanden die Forschenden heraus, dass die Wurzel Massilia-Bakterien mit Flavonen anlockt. Diese Substanz zählt zu den Pflanzenfarbstoffen und stimuliert mit Hilfe der Bakterien die Bildung von Seitenwurzeln. „Voraussetzung dafür war jedoch, dass die Maispflanze über ein Mikrotubuli-bindendes Gen verfügte“, sagt Dr. Peng Yu. War es nicht vorhanden, kam es auch nicht zur vermehrten Ausbildung von Seitenwurzeln.

Die Maissorte mit dem fehlenden Gen stammt aus einer riesigen Datenbank mit Mais-Mutationen, die Forschende um Dr. Caroline Marcon vom INRES aufgebaut haben. Die Datenbank hilft dabei, die Funktionen der Maisgene aufzuklären.

Besser an Dürre und Nährstoffmangel angepasste Maissorten

Das internationale Forschungsteam hofft, mittelfristig auch Vorhersagen zu den Erträgen machen zu können. „Wir betreiben Grundlagenforschung“, sagt Hochholdinger. „Diese Resultate könnten jedoch eine Basis sein, künftig besser an Dürre und Phosphormangel angepasste Maissorten anhand der Genom- und Mikrobiomdaten zu züchten.“ 

FÖRDERUNG

Neben verschiedenen Abteilungen des Instituts für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn war die Southwest University Chongqing (China), das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung in Gatersleben, die Pennsylvania State University (USA), das Instituto de Recursos Naturales y Agrobiologia de Sevilla (Spanien), die Universität Hohenheim, die University of Nebraska-Lincoln (USA), das Julius Kühn-Institut in Braunschweig, die Ghent University (Belgien), das Center for Plant Systems Biology in Ghent, die University of Amsterdam (Niederlande) und die Lebensmittelmikrobiologie der Universität Bonn beteiligt. Die Studie wurde unter anderem durch die Deutsche Forschungsgemeinschaft (DFG) gefördert, darunter auch durch Mittel des Exzellenzclusters PhenoRob.

PUBLIKATION

Xiaoming He, Danning Wang, Yong Jiang, Meng Li, Manuel Delgado-Baquerizo, Chloee McLaughlin, Caroline Marcon, Li Guo, Marcel Baer, Yudelsy A.T. Moya, Nicolaus von Wirén, Marion Deichmann, Gabriel Schaaf, Hans-Peter Piepho, Zhikai Yang, Jinliang Yang, Bunlong Yim, Kornelia Smalla, Sofie Goormachtig, Franciska T. de Vries, Hubert Hüging, Mareike Baer, Ruairidh J. H. Sawers, Jochen C. Reif, Frank Hochholdinger, Xinping Chen, Peng Yu: Heritable microbiome variation is correlated with source environment in locally adapted maize varieties, Nature Plants, DOI: 10.1038/s41477-024-01654-7; Internet: https://www.nature.com/articles/s41477-024-01654-7

 

 



More solutions from: University of Bonn


Website: http://www3.uni-bonn.de/

Published: March 25, 2024


Copyright @ 1992-2025 SeedQuest - All rights reserved