home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

Bacteria help plants grow better - Study by the University of Bonn may in the long term lead to new varieties that require less fertilizer
Bakterien helfen Pflanzen, besser zu wachsen


Bonn, Germany
April 8, 2021

A current study by scientists of the University of Bonn and Southwest University in China sheds light on an unusual interdependence: Maize can attract special soil bacteria that, in turn, help the plants to grow better. In the long term, the results could be used to breed new varieties that use less fertilizer and therefore have less impact on the environment. The study is published in the prestigious journal Nature Plants.

Every third-grader knows that plants absorb nutrients from the soil through their roots. The fact that they also release substances into the soil is probably less well known. And this seems to make the lives of plants a lot easier.


Right click to download: Amid young Maize plants: Amid young Maize plants:- Dr. Peng Yu from the Institute of Crop Sciences and Resource Conservation (INRES) at the University of Bonn. © Barbara Frommann/University of Bonn

 

That is at least the conclusion of the current study. The participating researchers studied several maize varieties that differ significantly in their yield. In their search for the cause, they came across an enzyme, flavone synthase 2. "The high-yield inbred line 787 we studied contains large amounts of this enzyme in its roots", explains Dr. Peng Yu of the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn. "It uses this enzyme to make certain molecules from the flavonoid group and releases them into the soil."

Flavonoids give flowers and fruits their color. In the soil, however, they perform a different function: They ensure that very specific bacteria accumulate around the roots. And these microbes, in turn, cause the formation of more lateral branches on these roots, called lateral roots. "This allows the maize plant to absorb more nitrogen from the environment," explains Prof. Dr. Frank Hochholdinger of the Institute of Crop Science and Resource Conservation (INRES). "This means the plant grows faster, especially when nitrogen supplies are scarce."

Sterilized soil did not cause a growth spurt

The researchers were able to demonstrate in experiments how well this works. They did this using a maize variety with the abbreviation LH93, which normally produces rather puny plants. However, that changed when they planted this variety in soil where the high-performance line 787 had previously grown: LH93 then grew significantly better. The effect disappeared when the botanists sterilized the soil before repotting. This shows that the enriched bacteria are indeed responsible for the turbo growth, because they were killed during sterilization.

The researchers were able to demonstrate in another experiment that the microorganisms really do promote the growth of lateral roots. Here, they used a maize variety that cannot form lateral roots due to a mutation. However, when they supplemented the soil with the bacterium, the roots of the mutant started to branch out. It is not yet clear how this effect comes about. Additionally, with microbial support the maize coped far better with nitrogen deficiency.

Results may contribute to more sustainable agriculture

Nitrogen is extremely important for plant growth - so much so, that farmers artificially increase its amount in the soil by applying fertilizer. However, some of the fertilizer is washed off the fields into streams with the rain or enters the groundwater. It can also enter the atmosphere in the form of nitrogen oxides or as ammonium gas, where it contributes to the greenhouse effect. The production of nitrogenous fertilizers furthermore requires a great deal of energy. "If we breed crops that can improve their nitrogen usage with the help of bacteria, we might be able to significantly reduce environmental pollution," Yu hopes.

The study shows that plants help to shape the conditions of the soil in which they grow, in ways that ultimately benefit them. However, this aspect has been neglected in breeding until now. Dr. Peng Yu adds that, in general, many interactions of the root system with soil organisms are not yet well enough understood. He wants to help change that: He has just taken over the leadership of an Emmy Noether junior research group at the University of Bonn, which is dedicated to precisely this topic. With its Emmy Noether Program, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) offers young researchers an opportunity to qualify for a university professorship within six years.

In addition to the University of Bonn and Southwest University, the study involved the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben, the Max Planck Institute for Plant Breeding Research in Cologne, research groups from the universities of Cologne, Göttingen and Kiel, and other international partners from China and Belgium.

Funding:

Funding for the study was provided by the German Research Foundation (DFG), among others, including funding from the Cluster of Excellence PhenoRob and the Southwest University (China).

Publication: Peng Yu et al.: Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation; Nature Plants; DOI: 10.1038/s41477-021-00897-y

 Link to the study


Bakterien helfen Pflanzen, besser zu wachsen

 

Eine aktuelle Studie der Universität Bonn und der Southwest University in China wirft Licht auf eine ungewöhnliche Wechselbeziehung: Mais kann spezielle Bodenbakterien anlocken, die ihm im Gegenzug beim Wachstum helfen. Die Ergebnisse könnten langfristig zur Züchtung neuer Sorten führen, die mit weniger Dünger auskommen und daher die Umwelt weniger belasten. Die Studie erscheint in der renommierten Fachzeitschrift Nature Plants.

Dass Pflanzen über ihre Wurzeln Nährstoffe aus dem Boden aufnehmen, weiß jeder Drittklässler. Dass sie umgekehrt auch Substanzen in die Erde abgeben, dürfte dagegen weniger bekannt sein. Und sie scheinen sich damit ihr Leben ein gehöriges Stück leichter zu machen.

In diese Richtung deutet zumindest die aktuelle Studie. Die beteiligten Wissenschaftler hatten verschiedene Maissorten untersucht, die sich deutlich in ihrem Ertrag unterscheiden. Auf der Suche nach der Ursache stießen sie auf ein Enzym, die Flavon-Synthase 2. „Die von uns untersuchte Hochleistungs-Zuchtlinie 787 enthält in ihrer Wurzel große Mengen dieses Enzyms“, erklärt Dr. Peng Yu vom Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn. „Sie stellt damit bestimmte Moleküle aus der Gruppe der Flavonoide her und entlässt sie in den Boden.“

Flavonoide geben Blüten und Früchten ihre Farbe. Im Erdreich erfüllen sie aber eine andere Funktion: Sie sorgen dafür, dass sich ganz spezifische Bakterien um die Wurzeln herum anreichern. Und diese Mikroben wiederum sind die Ursache dafür, dass sich an den Wurzeln mehr seitliche Verzweigungen bilden, Seitenwurzeln genannt. „Dadurch kann der Mais unter anderem mehr Stickstoff aus der Umgebung aufnehmen“, erläutert Prof. Dr. Frank Hochholdinger vom INRES. „Aus diesem Grunde wächst er schneller, vor allem bei knapper Stickstoff-Versorgung.“

Sterilisierter Boden bewirkte keinen Wachstumsschub

In Versuchen konnten die Wissenschaftler zeigen, wie gut das funktioniert. Sie nutzten dazu eine Maissorte mit dem Kürzel LH93, die normalerweise eher mickrige Pflanzen hervorbringt. Das änderte sich jedoch, wenn sie diese Sorte in Erde pflanzten, in der zuvor die Hochleistungs-Linie 787 gewachsen war: LH93 wuchs dann deutlich besser. Der Effekt blieb aus, wenn die Botaniker den Boden vor dem Umtopfen sterilisierten. Das zeigt, dass tatsächlich die angereicherten Bakterien für den Wachstums-Turbo verantwortlich sind, denn diese waren bei der Sterilisierung abgetötet worden.

Dass die Mikroorganismen tatsächlich das Wachstum der Seitenwurzeln fördern, konnten die Forscher in einem anderen Versuch zeigen. Darin nutzten sie eine Maissorte, die aufgrund einer Mutation keine Seitenwurzeln bilden kann. Wenn sie zur Erde das Bakterium hinzufügten, verzweigten sich die Wurzeln der Mutante jedoch. Auf welche Weise dieser Effekt zustande kommt, ist allerdings noch nicht geklärt. Außerdem kam der Mais dann weitaus besser mit Stickstoffmangel zurecht als ohne mikrobielle Unterstützung.

Ergebnisse könnten zu nachhaltigerer Landwirtschaft beitragen

Stickstoff ist für das Pflanzenwachstum extrem wichtig - so sehr, dass Landwirte seine Menge im Boden künstlich durch Düngung erhöhen. Doch Teile des Düngers werden mit dem Regen von den Feldern in die Bäche geschwemmt oder gelangen ins Grundwasser. Sie können zudem in Form von Stickoxiden oder als Ammoniak-Gas in die Atmosphäre gelangen und dort unter anderem zum Treibhauseffekt beitragen. Zudem erfordert die Produktion stickstoffhaltiger Düngemittel jede Menge Energie. „Wenn wir Nutzpflanzen daraufhin züchten, dass sie ihre Stickstoff-Versorgung durch die Mithilfe von Bakterien erhöhen, könnte das die Umweltbelastung deutlich reduzieren“, hofft Yu.

Schon jetzt zeigt die Studie, dass viele Pflanzen die Bedingungen des Bodens, in dem sie wurzeln, selbst mitgestalten - und zwar so, dass sie am Ende davon profitieren. Bei der Züchtung wurde dieser Aspekt aber bis jetzt vernachlässigt. Generell seien viele Interaktionen des Wurzelgeflechts mit Bodenorganismen noch nicht gut genug verstanden, meint Dr. Peng Yu. Er möchte dazu beitragen, dass sich das ändert: Er hat gerade die Leitung einer Emmy Noether-Nachwuchsgruppe an der Universität Bonn übernommen, die sich genau dieser Thematik widmet. Mit ihrem Emmy Noether-Programm bietet die Deutsche Forschungsgemeinschaft (DFG) jungen Forschenden eine Möglichkeit, sich binnen sechs Jahren für eine Hochschulprofessur zu qualifizieren.

An der Studie waren neben der Universität Bonn und der Southwest University unter anderem das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung in Gatersleben, das Max-Planck-Institut für Züchtungsforschung in Köln, Arbeitsgruppen der Universitäten Köln, Göttingen und Kiel sowie weitere internationale Partner aus China und Belgien beteiligt.

Förderung:

Die Studie wurde unter anderem durch die Deutsche Forschungsgemeinschaft (DFG) gefördert, darunter auch durch Mittel des Exzellenzclusters PhenoRob, sowie durch die Southwest University (China).

 

Originalpublikation:

Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation, Nature Plants; DOI: 10.1038/s41477-021-00897-y


Weitere Informationen:

https://www.nature.com/articles/s41477-021-00897-y Originalpublikation in Nature Plants

 



More solutions from: University of Bonn


Website: http://www3.uni-bonn.de/

Published: April 9, 2021


Copyright @ 1992-2025 SeedQuest - All rights reserved