home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

The evolution of grain yield – Decoding the genetic basis of floret fertility in wheat
Genetische Basis für die Blütchenfruchtbarkeit des Weizens entschlüsselt


Germany
February 22, 2019


Image
 

Zusammenfassung der Publikation:

  • In Getreiden ist die Blütchenfruchtbarkeit ein bestimmender Faktor für die Anzahl an Körnern pro Blütenstand, jedoch ist die genetische Grundlage der Blütchenfruchtbarkeit des Weizens (Triticum sp.) weitgehend unbekannt.
  • Identifizierung des Locus Grain Number Increase 1 (GNI1), welches nach Genduplikation zum Gen GNI-A1 führte.
  • GNI-A1 kodiert einen Homöodomäne Leucin-Zipper Klasse I (HD-Zip I) Transkriptionsfaktor. Die Expression des Gens hemmt das Wachstum der Rachilla und beeinträchtigt somit die Blütchenfruchtbarkeit.
  • Mutation von GNI-A1 führte zu einer Genvariante mit eingeschränkter Funktion. Im Gegensatz zum ursprünglichen Gen erhöht das mutierte Allel die Blütchenfruchtbarkeit und führt zu einer höheren Anzahl an fruchtbaren Blütchen pro Ährchen und folglich zu einer gesteigerten Kornproduktion. Im Laufe der Weizendomestikation wurden Pflanzen selektiert, welche das mutierte Allel tragen.
  • Kollaboration von Wissenschaftlern aus Japan, Deutschland und Israel
  • Publikation im Journal PNAS

A high grain yield is undoubtedly a desirable trait in cereal crops. Floret fertility is a key factor which determines the number of grains per inflorescence of cereals such as bread wheat or barley. Nonetheless, until recently little was known about its genetic basis. Whilst investigating floret fertility, a group of researchers from Japan, Germany and Israel have now discovered the locus Grain Number Increase 1 (GNI1), an important contributor to floret fertility.

Even though the consequent gene GNI-A1 itself results in a lower grain yield, the researchers showed that its mutation, the reduced-function allele of GNI-A1, leads to an increased number of fertile florets and to a higher grain count. Due to this positive effect, the mutated allele has been under selection over the course of wheat domestication.

The large tribe of Triticeae encompasses several important cereal crops, including bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). One of the major outcomes of the domestication process of selected Triticae species has been the increased number of grains per inflorescence in modern cultivars – due to a boost in the crop’s floret fertility.

All Triticeae plants produce an unbranched inflorescence, referred to as a spike. In wheat, the spike is made up of several spikelets, which each generate an indeterminate number of grain-producing florets. At the floral developmental stage called “white anther”, each wheat spikelet normally produces up to 12 potentially fertile floret primordia. However, more than 70% of the florets abort during their development. Whilst it is known that the number of grains set per spikelet is determined by the fertility of each floret, the genetic basis for floret fertility was recently still widely unidentified. An international group of researchers, including several scientists from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), have now collaborated in an effort to decode the genetic basis of floret fertility in wheat.

The researchers focussed on the quantitative trait loci (QTL) responsible for an enhanced grain number per spikelet, which was previously identified by a genome-wide association analysis of European winter bread wheat. They were able to map the QTL and identified the gene Grain Number Increase 1 (GNI-A1), which had evolved in the Triticeae through gene duplication, on chromosome arm 2AL.
The scientists showed that the resulting GNI-A1 encoded a homeodomain leucine zipper class I (HD-Zip I) transcription factor. The expression of the transcription factor resulted in the inhibition of the growth and development of the wheat rachilla, the axis bearing the florets within the spikelets, therefore negatively affected floret fertility and grain yield.
Over the course of domestication, a decrease of GNI1 expression had led to more fertile florets and an increase in grains per spikelet. However, through the additional analysis of high-yielding bread wheat cultivars, the researchers were able to reveal a reduced-function allele of the GNI-A1 gene. This mutated allele was found in modern wheat with higher floret fertility, implying that it increased floret fertility and that a selection for wheat cultivars carrying the reduced-function allele had taken place during further wheat-domestication.

The first author of the study, Dr. Shun Sakuma (Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Tottori University, Japan), who had started this work under the supervision of Dr. Takao Komatsuda at the National Institute of Agrobiological Sciences (presently National Agriculture and Food Research Organization (NARO), Japan), emphasises that “this study shows for the first time a direct association between increased floret fertility, higher grain number per spike, and higher plot yields of field-grown wheat.”. The project had been continued when Dr. Sakuma had joined the research group of Dr. Thorsten Schnurbusch at the IPK Gatersleben. Further experiments were performed in collaboration with members of three additional IPK research groups as well as scientists from the Israeli Hebrew University of Jerusalem.

As a further result of the international collaboration, GNI-A1 proved to be an orthologue of the barley Vrs1 gene, which controls lateral floret fertility and leads to inhibited floret development. Similar to the reduced-function allele of GNI-A1, the loss-of-function mutants of Vrs1 led to an increased grain yield. Having previously also contributed to elucidating the molecular basis of barley Vrs1, Dr. Komatsuda (NARO) now is “very pleased that we have discovered what GNI1 actually does in wheat”. The appearance of GNI1/Vrs1 and the parallel selection of the mutated alleles seem to be in line with the genetic hotspot hypothesis, which implies that evolutionary relevant mutations tend to accumulate in specific genes and at specific positions within genes.

The identification and understanding of the genetic basis of floret fertility now opens new options for further investigation of plant architecture and for grain yield improvement in wheat. And, as noted by Dr. Schnurbusch (IPK), “this knowledge may help in finding related genes working in the same direction to further improve cereal breeding to fulfil needed demands.”

Original publication:

Unleashing floret fertility in wheat through the mutation of a homeobox gene” PNAS in press, https://doi.org/10.1073/pnas.1815465116


Genetische Basis für die Blütchenfruchtbarkeit des Weizens entschlüsselt

 

     Zweifelsohne ist ein hoher Kornertrag eine anstrebenswerte Eigenschaft in Getreidearten. Blütchenfruchtbarkeit ist ein entscheidender Faktor, welcher die Anzahl der Körner pro Blütenstand in Getreiden mitbestimmt. Dennoch war bis vor Kurzem wenig über die genetischen Grundlagen von Blütchenfruchtbarkeit bekannt. Bei der Untersuchung dieses Faktors hat eine Gruppe von Wissenschaftlern aus Japan, Deutschland und Israel nun in Weizen den Locus Grain Number Increase 1 (GNI1) entdeckt, welcher einen beachtlichen Einfluss auf die Blütenfruchtbarkeit hat.

Obwohl das am Locus befindliche GNI-A1 Gen zu einem niedrigeren Kornertrag führt, zeigten die Forscher, dass dessen Mutation, ein Allel mit eingeschränkter Funktion, eine erhöhte Anzahl fruchtbarer Blütchen und einen gesteigerten Kornertrag zur Folge hat. Aufgrund dieses positiven Effekts wurde diese mutierte Genvariante im Laufe der Weizendomestikation selektiert und ist heutzutage in vielen Weizensorten mit hohem Kornertrag zu finden.

Der Tribus der Triticeae umfasst mehrere wichtige Getreidearten, so zum Beispiel den Weizen (Triticum aestivum L.) und die Gerste (Hordeum vulgare L.). Eine der wichtigsten Folgen des Domestikationsprozesses ausgewählter Triticeae-Arten ist die gesteigerte Anzahl an Körnern bei den modernen Kulturvarietäten – dank einer erhöhten Blütenfruchtbarkeit.

Alle Pflanzen der Triticeae entwickeln während ihres Wachstums einen unverzweigten Blütenstand, welcher als Ähre bezeichnet wird. Im Weizen setzt sich die Ähre aus mehreren Ährchen zusammen, welche jeweils eine unbestimmte Anzahl an Korn-produzierenden Blütchen bilden. Während der Blütchenentwicklung produziert jedes Weizenährchen bis zu 12 potentiell fruchtbare Blütchenvorstufen. Jedoch sterben die meisten dieser potenziellen Blütchen und damit Körner (über 70 %) während ihrer Entwicklung ab. Es ist bekannt, dass die Kornanzahl pro Ährchen von der Fruchtbarkeit der einzelnen Blütchen abhängt. Trotzdem war die genetische Basis der Blütchenfruchtbarkeit bis vor kurzem noch weitgehend unerforscht. Eine internationale Gruppe von Wissenschaftlern, darunter mehrere Forscher des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), hat nun in Zusammenarbeit die genetischen Grundlagen der Blütchenfruchtbarkeit in Weizen entschlüsselt.

Die Forscher konzentrierten sich dabei auf ein „Quantitatives Trait Loci“ (QTL), welches zuvor bei einer genomweiten Assoziationsstudie in europäischen Winterweizensorten gefunden worden war und für eine erhöhte Anzahl an Körnern pro Ährchen sorgt. Nach der Kartierung des QTLs identifizierten sie den Grain Number Increase 1 (GNI1) Locus und das dazugehörige Gen GNI-A1, welches in Triticeaen durch eine Genduplikation auf dem Chromosomenarm 2AL entstanden war.
Die Wissenschaftler zeigten, dass das GNI-A1 Gen für einen Homöodomäne Leucin-Zipper Klasse I (HD-Zip I) Transkriptionsfaktor kodiert. Die Expression des Transkriptionsfaktors führt zu einer beeinträchtigten Entwicklung der Rachilla, der blütchentragenden Achse der Weizenährchen. Dies wiederum hat negative Auswirkungen auf die Blütchenfruchtbarkeit und den Kornertrag.
Im Laufe der Domestikation des Weizens führte die reduzierte Expression von GNI1 zu fruchtbareren Blütchen und einer Zunahme der Kornzahl pro Ährchen. Die Forscher entdeckten bei zusätzlichen Analysen von ertragsstarken Weizen-Kulturvarietäten eine eingeschränkt funktionierende Allel-Form des Gens GNI-A1. Dieses mutierte Allel wurde in modernen Weizenarten mit hoher Blütchenfruchtbarkeit gefunden, was stark darauf hindeutete, dass es eine Erhöhung der Blütchenfruchtbarkeit bewirkt. Demnach waren im Laufe der Weizendomestikation Varietäten selektiert worden, welche das eingeschränkt funktionierende Allel trugen, da diese einen gesteigerten Kornertrag zeigten.

Der Erstautor der Studie, Dr. Shun Sakuma (IPK Gatersleben und Tottori University, Japan), welcher das Projekt unter Betreuung von Dr. Takao Komatsuda am National Institute of Agrobiological Sciences (derzeit am National Agriculture and Food Research Organization (NARO), Japan) initiiert hatte, betont: “Diese Studie zeigt zum ersten Mal einen direkten Zusammenhang zwischen erhöhter Blütchenfruchtbarkeit, höherer Kornzahl pro Ährchen und höherem Ernteertrag im Feldversuch bei Weizen.“
Das Projekt wurde von Dr. Sakuma in der Forschungsgruppe von Dr. Thorsten Schnurbusch am IPK Gatersleben fortgeführt. Weitere Experimente wurden gemeinsam mit Mitgliedern von drei anderen IPK-Forschungsgruppen sowie in Zusammenarbeit mit israelischen Wissenschaftlern der Hebrew University of Jerusalem durchgeführt.

Ein weiteres Ergebnis der internationalen Zusammenarbeit zeigte, dass GNI-A1 ein Ortholog des Gersten-Gens Vrs1 ist, welches die laterale Blütchenfruchtbarkeit in Gerste kontrolliert und eine Hemmung der Blütchenentwicklung bewirkt. Ähnlich wie das eingeschränkt funktionierende Allel von GNI-A1 im Weizen, sorgen die mutierten „loss-of-function“ Formen von Vrs1 wiederum für eine Erhöhung des Kornertrags. Dr. Komatsuda (NARO), welcher zuvor an der Aufklärung der molekularen Grundlagen von Vrs1 in Gerste beteiligt war, ist „erfreut, dass wir nun entdeckt haben, was GNI1 tatsächlich in Weizen bewirkt.“ Das Auftreten von GNI1/Vrs1 und die parallele Selektion des mutierten Allels steht im Einklang mit der “genetischen Hotspot-Hypothese“. Diese besagt, dass evolutionär relevante Mutationen tendenziell in spezifischen Genen und an spezifischen Positionen in Genen auftreten.

Die Identifizierung und das Verständnis der genetischen Basis der Blütchenfruchtbarkeit eröffnen nun neue Wege zur Erweiterung des Wissens über die Pflanzenarchitektur, aber auch neue Möglichkeiten für die weitere Verbesserung des Kornertrags in Weizen. Denn, wie Dr. Schnurbusch (IPK) zum Ausdruck brachte: „Dieses Wissen kann uns dabei helfen, verwandte Gene zu finden, die in ähnlicher Weise arbeiten, um so die Getreideerträge weiterhin zu verbessern.“

 



More solutions from: IPK Gatersleben - Leibniz Institute of Plant Genetics and Crop Plant Research


Website: http://www.ipk-gatersleben.de

Published: February 22, 2019


Copyright @ 1992-2024 SeedQuest - All rights reserved