GErmany
January 24, 2019
Cryo-EM structure of the linked complexes of CcmM (red) and Rubisco (green) in liquid droplets (yellow). Formation of this network is the first step in carboxysome biogenesis in cyanobacteria.
Photosynthesis is a fundamental biological process which allows plants to use light energy for their growth. Most life forms on Earth are directly or indirectly dependent on photosynthesis. Researchers at the Max Planck Institute of Biochemistry in Germany have collaborated with colleagues from the Australian National University to study the formation of carboxysomes – a structure that increases the efficiency of photosynthesis in aquatic bacteria. Their results, which were now published in Nature, could lead to the engineering of plants with more efficient photosynthesis and thus higher crop yields.
With the global population increasing by an estimated 80 million people each year, the demand for food is steadily on the rise. To meet this demand, scientists are working on strategies to improve the productivity of crops.
Photosynthesis – essential but inefficient
While most organisms have to take up nutrients to generate energy for their cells, plants and some microbes can fuel their cells with light energy. In a process called photosynthesis, they convert water and carbon dioxide (CO2) to sugar and oxygen with the help of sunlight. The critical enzyme of this reaction is Rubisco, which catalyzes the fixation of CO2 from the atmosphere. However, Rubisco, which is estimated to be the most abundant enzyme on Earth, works slowly and inefficiently. Instead of binding CO2, Rubisco can also react with oxygen. A lot of energy is lost in this side reaction. Therefore, scientists are trying to engineer a more efficient version of Rubisco to improve plant growth. A team led by Manajit Hayer-Hartl, head of the research group “Chaperonin-assisted protein folding” at the Max Planck Institute of Biochemistry in Martinsried, has now made an important contribution to these efforts.
Cyanobacteria are aquatic microbes that perform photosynthesis. They have evolved a strategy to increase the efficiency of their Rubisco enzyme. Cyanobacteria locally increase the concentration of CO2 in specialized structures called carboxysomes and confine their Rubisco to these structures. In this way, cyanobacteria reduce the energy that is lost in the side reaction with oxygen. The new study has now demonstrated how the formation of carboxysomes is initiated.
Trapping Rubisco for extra energy
Cyanobacteria use a helper protein called CcmM to capture Rubisco. CcmM is built of several repeat modules that resemble the small subunit of Rubisco – therefore it was long assumed that these modules replace the small subunits of Rubisco when the proteins interact, thereby linking Rubisco proteins. However, the complex between CcmM and Rubisco is highly dynamic and therefore could not be solved by traditional structural biology methods. “In this study, we took advantage of the rapidly developing method of cryo-electron microscopy to capture these dynamic interactions”, says Huping Wang, shared first author of the study. Using cryo-EM, the researchers showed that CcmM does not replace the small subunit of Rubisco but rather links Rubisco proteins together by an unexpected mechanism.
The interaction between CcmM and Rubisco causes de-mixing of the protein complex from other proteins in the cell. “This de-mixing of proteins is called phase separation, a process that concentrates proteins locally. In cyanobacteria, the protein shell of the carboxysome is then formed around the phase separated CcmM and Rubisco to capture them“, explains Xiao Yan, shared first author of the study. A similar process of phase separation also plays a role in neurodegenerative diseases such as Amyotrophic Lateral Sclerosis.
The formation of carboxysomes boosts photosynthesis because these microcompartments concentrate CO2 in the vicinity of Rubisco, making the enzyme more efficient. The current results greatly improve the understanding how these CO2-concentrating structures are formed. Manajit Hayer-Hartl describes a potential application of the results of the study: “If we could transfer functioning carboxysomes into higher plants, this would give crops an extra boost by allowing them to fix CO2 more efficiently. The energy, which is usually lost in the reaction of Rubisco with oxygen, would go towards the production of biomass “. In the long-term, the insights from Hayer-Hartl’s research could contribute to the generation of more efficient crops, reduce the demand for fertilizers and improve the global food supply. [CW]
About Manajit Hayer-Hartl
Manajit Hayer-Hartl received her Bachelor of Science degree at the University of Stirling, Scotland, UK, where she afterwards gained her PhD. Her interest in structural and cellular biology motivated her to several postdoctoral fellowships at renowned research institutions, among them the Louis Pasteur Institute in Strasbourg, France and the Sloan-Kettering Institute in New York, USA. Hayer-Hartl joined the Max Planck Institute of Biochemistry in 1997 as group leader in the department “Cellular Biochemistry”. Since 2006, she is head of the research group “Chaperonin-assisted Protein Folding”. Her research focuses on chaperones and how these molecular machines assist in proper protein folding and assembly. Hayer-Hartl is an elected member of the European Molecular Biology Organization (EMBO) and of the German National Academy of Sciences (Leopoldina). For her research, she has received the Dorothy Crowfoot Hodgkin Award and the Charles F. Kettering Award.
About the Max Planck Institute of Biochemistry
The Max Planck Institute of Biochemistry (MPIB) belongs to the Max Planck Society, an independent, non-profit research organization dedicated to top level basic research. As one of the largest Institutes of the Max Planck Society, 850 employees from 45 nations work here in the field of life sciences. In currently eight departments and about 25 research groups, the scientists contribute to the newest findings in the areas of biochemistry, cell biology, structural biology, biophysics and molecular science. The MPIB in Munich-Martinsried is part of the local life science campus where two Max Planck Institutes, a Helmholtz Center, the Gene-Center, several bio-medical faculties of two Munich universities and several biotech-companies are located in close proximity. http://www.biochem.mpg.de
Zusatzantrieb für die Photosynthese
Die Photosynthese ist ein grundlegender biologischer Prozess, der es Pflanzen ermöglicht, Lichtenergie für ihr Wachstum zu nutzen. Die meisten Lebensformen auf der Erde hängen direkt oder indirekt von der Photosynthese ab. Forscher des Max-Planck-Instituts für Biochemie in Martinsried bei München haben gemeinsam mit Kollegen von der Australian National University die Bildung von Carboxysomen untersucht – einer Struktur, die die Effizienz der Photosynthese in wasserlebenden Bakterien steigert. Ihre Ergebnisse, die jetzt in Nature veröffentlicht wurden, könnten zur Entwicklung von Pflanzen mit einer effizienteren Photosynthese und somit höheren Ernteerträgen führen.
Mit einem weltweiten Bevölkerungswachstum von schätzungsweise 80 Millionen Menschen jährlich nimmt auch die Nahrungsmittelnachfrage stetig zu. Um diesem Bedarf gerecht zu werden, arbeiten Wissenschaftler an Strategien mit denen sich die Produktivität von Nutzpflanzen steigern lässt.
Photosynthese – entscheidend, aber ineffizient
Während die meisten Organismen auf die Aufnahme von Nährstoffen angewiesen sind, um Energie für ihre Zellen zu erzeugen, können Pflanzen sowie einige Mikrobenarten ihre Zellen mit Lichtenergie versorgen. In einem Prozess der als Photosynthese bezeichnet wird, wandeln sie dabei Wasser und Kohlenstoffdioxid (CO2) mit Hilfe von Sonnenlicht in Zucker und Sauerstoff um. Entscheidend für diese Reaktion ist das Enzym Rubisco, das für die Fixierung von CO2 aus der Atmosphäre verantwortlich ist. Rubisco, das als das am häufigsten auf der Erde vorkommende Enzym gilt, arbeitet allerdings langsam und ineffektiv. Statt CO2 zu fixieren, kann Rubisco auch mit Sauerstoff reagieren. Bei dieser Nebenreaktion geht viel Energie verloren. Deshalb versuchen Wissenschaftler, eine effizientere Version von Rubisco zu entwickeln, um das Pflanzenwachstum zu fördern. Ein Team unter der Leitung von Manajit Hayer-Hartl, Leiterin der Forschungsgruppe „Chaperonin-vermittelte Proteinfaltung” am Max-Planck-Institut für Biochemie in Martinsried, hat jetzt einen wichtigen Beitrag zu diesen Bemühungen beigesteuert.
Cyanobakterien sind wasserlebende Mikroben, die Photosynthese betreiben. Sie haben dazu eine Strategie entwickelt, die die Effizienz ihres Rubisco-Enzyms steigert. Dazu erhöhen die Cyanobakterien die CO2-Konzentration in speziellen Strukturen, den sogenannten Carboxysomen, und beschränken ihr Rubisco auf diese Strukturen. So reduzieren sie den Energieverlust, der durch die Nebenreaktion mit Sauerstoff entsteht. In der neuen Studie konnte jetzt gezeigt werden, wie die Bildung von Carboxysomen eingeleitet wird.
Rubisco einfangen für zusätzliche Energie
Cyanobakterien nutzen das Helferprotein CcmM, um Rubisco einzufangen. CcmM besteht aus mehreren sich wiederholenden Modulen, die der kleinen Untereinheit des Rubisco gleichen. Deshalb vermutete man lange, dass diese Module bei einer Interaktion der Proteine die kleinen Rubisco-Untereinheiten ersetzen und dadurch Rubisco-Proteine miteinander verbinden. Der Komplex zwischen CcmM und Rubisco ist jedoch von einer hohen Dynamik geprägt und konnte deshalb nicht durch traditionelle Methoden der Strukturbiologie aufgeklärt werden. „Wir haben in dieser Studie die Vorteile der sich rasant entwickelnden Kryo-Elektronenmikroskopie genutzt, um diese dynamischen Interaktionen zu erfassen”, erläutert Huping Wang, eine der Erstautoren der Studie. Mit Hilfe der Kryo-EM gelang den Forschern der Nachweis, dass CcmM nicht die kleine Untereinheit des Rubisco ersetzt, sondern Rubisco-Proteine über einen unerwarteten Mechanismus miteinander verknüpft.
Die Interaktion zwischen CcmM und Rubisco verursacht die Entmischung des Proteinkomplexes von anderen Proteinen in der Zelle. „Diese Entmischung von Proteinen wird als Phasentrennung bezeichnet und ist ein Prozess, bei dem Proteine lokal konzentriert werden. In Cyanobakterien bildet sich dann die Proteinhülle des Carboxysoms rund um das phasengetrennte CcmM und Rubisco, um diese einzufangen“, beschreibt Xiao Yan, ebenfalls Erstautor der Studie. Ein ähnlicher Prozess der Phasentrennung von Proteinen ist auch an der Entstehung von neurodegenerativen Erkrankungen wie der amyotrophen Lateralsklerose beteiligt.
Die Carboxysom-Bildung fördert die Photosynthese, weil diese Mikrokompartimente den CO2-Gehalt im Umkreis von Rubisco erhöhen und das Enzym so effizienter arbeiten lassen. Die aktuellen Ergebnisse der Studie tragen enorm zur Verbesserung des Verständnisses bei, wie diese CO2-konzentrierenden Strukturen gebildet werden. Manajit Hayer-Hartl beschreibt eine mögliche Anwendung der Studienergebnisse: „Wenn wir funktionierende Carboxysome auf höhere Pflanzen übertragen könnten, würde das die Nutzpflanzen zusätzlich anregen, CO2 noch effizienter zu fixieren. Dann würde die Energie, die normalerweise in der Reaktion von Rubisco mit Sauerstoff verloren geht, für die Erzeugung von Biomasse zur Verfügung stehen.“ Langfristig könnten die Forschungserkenntnisse von Hayer-Hartl dazu beitragen, effizientere Nutzpflanzen zu züchten, den Einsatz von Kunstdüngern zu reduzieren und die weltweite Nahrungsversorgung zu verbessern. [CW]
Über Manajit Hayer-Hartl
Dr. Manajit Hayer-Hartl promovierte 1984 in Chemie an der Universität Stirling, UK. Von 1984 bis 1990 forschte sie als Postdoktorandin am Louis-Pasteur-Institut in Straßburg, Frankreich, an der Ludwig-Maximilians-Universität in München und dem Jules Stein Eye Institut, Los Angeles, USA. Ihre Forschung führte sie von 1991 bis 1997 an das Sloan-Kettering-Institut, New York, USA. Anschließend war sie Projektgruppenleiterin am Max-Planck-Institut für Biochemie in Martinsried. Seit 2006 leitet sie hier die Forschungsgruppe „Chaperonin-vermittelte Proteinfaltung“. Sie untersucht grundlegende Funktionen molekularer Chaperone bei Proteinfaltung und Assemblierung. Hayer-Hartl ist gewähltes Mitglied der European Molecular Biology Organization (EMBO) und der deutschen Akademie der Wissenschaften (Leopoldina). Für ihre Forschung wurde sie unter anderem mit dem Dorothy Crowfoot Hodgkin Preis und dem Charles F. Kettering Preis ausgezeichnet.
Über das Max-Planck-Institut für Biochemie
Das Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München zählt zu den führenden internationalen Forschungseinrichtungen auf den Gebieten der Biochemie, Zell- und Strukturbiologie sowie der biomedizinischen Forschung und ist mit rund 35 wissenschaftlichen Abteilungen und Forschungsgruppen und ungefähr 800 Mitarbeitern eines der größten Institute der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Das MPIB befindet sich auf dem Life-Science-Campus Martinsried in direkter Nachbarschaft zu dem Max-Planck-Institut für Neurobiologie, Instituten der Ludwig-Maximilians-Universität München und dem Innovations- und Gründerzentrum Biotechnologie (IZB). http://www.biochem.mpg.de