Germany
November 13, 2024
Representative genotypes are chosen from genetically diverse populations based on genome-wide genotypic data for ex situ germplasm collections. Chromosome-scale genome assemblies are built for a small, but representative core set. The pan-genome compartments such as core (i.e. genomic sequences present in all individual of a species) and variable (i.e. sequences found in some/few individuals) are identified from the de novo assemblies.
Repräsentative Genotypen werden aus genetisch vielfältigen Populationen, z.B. Sammlungen einer Genbank, auf der Grundlage genomweiter genotypischer Daten ausgewählt. Für einen kleinen, aber möglichst repräsentativen Satz and Genotypen werden vollständige Genomassemblies erstellt, aus denen die „konservierten“ (d. h. genomische Sequenzen, die in allen Individuen einer Art vorkommen) und „variablen“ (d. h. Sequenzen, die in einigen/wenigen Individuen gefunden werden) Pangenom-Kompartimente identifiziert werden.
Pangenomes are collections of annotated genome sequences of multiple individuals of a species. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants. An international research team led by the IPK Leibniz Institute reports a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes. An expanded catalogue of sequence variation in the crop includes structurally complex loci that are rich in gene copy number variation and that control certain traits. Today, the results were published in the journal “Nature”.
Reliable crop yields fueled the rise of human civilizations. As people embraced a new way of life, cultivated plants, too, had to adapt to the needs of their domesticators. There are different adaptive requirements in a wild compared to an arable habitat. Crop plants and their wild progenitors differ, for example, in how many vegetative branches they initiate or how many seeds or fruits they produce and when.
A common concern among crop conservationists is dangerously reduced genetic diversity in cultivated plants. But crop evolution needs not be a unidirectional loss of diversity. “Our panel of 1,000 plant genetic resources and 315 elite varieties allowed us to compare pangenome complexity in the crop and its wild progenitor”, explains Dr. Murukarthick Jayakodi, joint first author of the study. “And we have shown that valuable diversity can arise after domestication.”
The recently published human draft pangenome demonstrated how contiguous long-read sequences help make sense of reams of sequence data. This current study on the barley pangenome sheds light on crop evolution and breeding. The shortcomings of previous short-read assemblies made it all but impossible to see patterns that now emerge from their long-read counterparts. “We were able for the first time to study the evolution of structurally complex loci and detected 173 of them with nearly identical tandem repeats and genes”, explains Dr. Martin Mascher, head of IPK’s research group “Domestication Genomics”.
To demonstrate the utility of the pangenome, the researchers focused on a few loci - Mla, HvTB1, amy1_1, HvSRH1 - and the traits they control: disease resistance, plant architecture, starch mobilization and the hairiness of a rudimentary appendage to the grain. And taking a broader view of the environment as a set of exogeneous factors that drive natural selection, barley provides a fascinating, and economically important example.
The process of malting involves the sprouting of moist barley grains, driving the release of enzymes that break down starch into fermentable sugars. Only the long-read based high-quality pangenome revealed the copy-number differences and haplotype diversity of the starch-degrading alpha-amylase1_1 family of genes and makes this information accessible to breeding. “Novel allelic variation is illustrative of the power of pangenomics”, emphasises Prof. Dr. Nils Stein, head of IPK’s department “Genebank”. “Our findings indicate that much of the allelic diversity we see at structurally complex loci in the pangenome may have helped crop plants adapt to new selective regimes in agricultural ecosystems.”
Barley is among the top five crops globally today. Its importance may increase in the future because barley tolerates harsh and marginal environments and can adapt to dry climates. Allelic diversity at structurally complex loci may help fulfill the needs of both farmers and breeders. “More diverse crop pangenomes will help us understand how the counteracting forces of past domestication bottlenecks and newly arisen structural variants influence future crop improvement in changing climates”, says Prof. Dr. Nils Stein.
With this study the IPK emphasises its role as a leading institution in the area of crop and genebank genomics with a coordinating role in genome sequencing and earlier pangenome studies of barley, wheat, rye and oats and their wild relatives. The barley pangenome project brought together 80 scientists from 12 different countries and was initiated and coordinated at IPK.
Original publication:
Jayakodi et al. (2024): Structural variation in the pangenome of wild and domesticated barley.
Nature.
DOI: 10.1038/s41586-024-08187-1
IPK-geführtes Forschungsteam gibt Einblicke in das Pangenom der Gerste
Pangenome sind Sammlungen von Genomsequenzen mehrerer Individuen einer Art. Die strukturellen Varianten, die durch diese Datensätze aufgedeckt werden, sind für die genetische Analyse von Nutzpflanzen von großer Bedeutung. Ein internationales Forschungsteam unter der Leitung des IPK-Leibniz-Instituts hat nun das Pangenom der Gerste untersucht. Dazu wurden komplette Genomsequenzen von 76 Wild- und Kulturgersten herangezogen, ebenso wie Resequenzierungsdaten von weiteren 1.315 Genotypen. Ein darauf basierender Katalog der Sequenzvariation umfasst strukturell komplexe Loci für wichtige Merkmale, die sich bisher der eingehenderen Analyse entzogen haben.
Zuverlässige Ernteerträge waren Voraussetzung für den Aufstieg menschlicher Zivilisationen. Doch als die Menschen sich eine neue Lebensweise aneigneten, mussten sich auch die Kulturpflanzen neuen Bedürfnissen anpassen. In der freien Natur herrschen andere Bedingungen, als in einem landwirtschaftlich genutzten Lebensraum. Daher unterscheiden sich Kulturpflanzen und ihre wilden Vorfahren etwa darin, wie viele Seitentriebe sie ausbilden oder wie viele Samen oder Früchte sie zu welchem Zeitpunkt produzieren.
Heute besorgt viele Menschen der Rückgang der genetischen Vielfalt bei Kulturpflanzen durch die moderne landwirtschaftliche Praxis. Aufgrund der Mechanismen der Evolution muss dies jedoch nicht zwangsläufig zu einem Verlust an Vielfalt führen. „Unsere Sammlung aus 1.000 pflanzengenetischen Ressourcen und 315 Kultursorten ermöglichte es uns, in der vorgelegten Studie die Komplexität des Pangenoms in der Kulturpflanze und ihrem wild-vorkommenden Vorfahren zu vergleichen“, sagt Dr. Murukarthick Jayakodi, einer der vier Erstautoren der Studie, die heute in der Fachzeitschrift Nature veröffentlicht wurde. „Und wir haben gezeigt, dass nach der Domestizierung eine wertvolle Vielfalt entstehen kann.“
Anhand des kürzlich veröffentlichten Entwurfes des menschlichen Pangenoms konnte bereits gezeigt werden, wie Referenzgenomesequenzen mehrerer Individuen sinnvoll genutzt werden können. In der aktuellen Studie über das Pangenom der Gerste geht es nun um Evolution und Züchtung von Nutzpflanzen. Die zusammenhängenden und vollständigen Referenzsequenzen für 76 Gerstegenotypen waren hierfür entscheidend. „Wir konnten erstmals die Evolution sogenannter strukturell komplexer Genomregionen oder Loci untersuchen und 173 dieser Loci mit nahezu identischen direkten, Gen-tragenden Wiederholungen nachweisen“, erklärt Dr. Martin Mascher, Leiter der Arbeitsgruppe „Domestikationsgenomik“ am IPK.
Um den Nutzen des Pangenoms zu demonstrieren, konzentrierten sich die Forscherinnen und Forscher auf einige wenige Loci - Mla, HvTB1, amy1_1, HvSRH1 - und die Merkmale, die sie kontrollieren: Krankheitsresistenz, Pflanzenarchitektur, Stärkemobilisierung und die Behaarung eines rudimentären Anhängsels am Korn. Betrachtet man die Umwelt als eine Reihe exogener Faktoren, die die natürliche Selektion vorantreiben, so bietet Gerste nicht nur ein faszinierendes, sondern auch ein wirtschaftlich wichtiges Beispiel.
Beim Mälzen, werden Gerstekörner kontrolliert zum Keimen gebracht. Dabei werden Enzyme freigesetzt, die Stärke in vergärbare Zucker abbauen. Die Pangenom-Sequenzen enthüllten die Unterschiede in der Kopienzahl und die Haplotypenvielfalt der stärkeabbauenden alpha-Amylase1_1-Gen-Familie. „Neue allelische Variationen zeigen die Leistungsfähigkeit der Pangenomik“, bekräftigt Prof. Dr. Nils Stein, Leiter der Abteilung „Genbank“ des IPK. „Unsere Ergebnisse deuten darauf hin, dass ein Großteil der allelischen Vielfalt, die wir an strukturell komplexen Loci im Pangenom sehen, den Kulturpflanzen dabei geholfen haben könnte, sich an neue Selektionsmechanismen in den landwirtschaftlichen Ökosystemen anzupassen.“
Gerste gehört heute zu den fünf wichtigsten Kulturpflanzen weltweit - und ihre Bedeutung könnte sogar weiter zunehmen. Gerste hat wichtige Vorteile. Das Getreide ist in der Lage, sich an raue und karge Bedingungen sowie an trockene Klimazonen anzupassen. Die Allelvielfalt an strukturell variablen Loci spielt hierbei möglicherweise eine wichtige Rolle. „Die Komplexität des Gerste-Pangenoms in Wild- und Kulturgerste bietet eine neue Informationsdichte für die Anpassung dieser wichtigen Kulturpflanze an die sich verändernden Klima- und Anbaubedingungen der Zukunft“, erklärt Prof. Dr. Nils Stein.
Mit dieser Studie unterstreicht das IPK seine international führende Rolle auf dem Gebiet der Analyse der Kulturpflanzengenome und deren Diversität in Genbanken. So war das Institut bereits maßgeblich beteiligt an der Genomsequenzierung und früheren Pangenom-Studien von Gerste, Weizen, Roggen und Hafer sowie deren wilden Verwandten. Das jetzige Gerste-Pangenom-Projekt, an dem 80 Wissenschaftlerinnen und Wissenschaftler aus zwölf Ländern beteiligt waren, wurde ebenfalls vom IPK initiiert und koordiniert.
Originalpublikation:
Jayakodi et al. (2024): Structural variation in the pangenome of wild and domesticated barley. Nature. DOI: 10.1038/s41586-024-08187-1